login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A177175
Sequence defined by the recurrence formula a(n+1)=sum(a(p)*a(n-p)+k,p=0..n)+l for n>=1, with here a(0)=1, a(1)=6, k=1 and l=-1.
0
1, 6, 13, 64, 287, 1515, 8143, 46030, 265909, 1572193, 9443997, 57529101, 354394057, 2204333079, 13823770729, 87311462772, 554904606279, 3546103422655, 22772157825695, 146876986425311, 951065019090195
OFFSET
0,2
FORMULA
G.f f: f(z)=(1-sqrt(1-4*z*(a(0)-z*a(0)^2+z*a(1)+(k+l)*z^2/(1-z)+k*z^2/(1-z)^2)))/(2*z) (k=1, l=-1).
Conjecture: (n+1)*a(n) +(2-7*n)*a(n-1) +(19-5*n)*a(n-2) +(43*n-134)*a(n-3) +4*(53-13*n)*a(n-4) +20*(n-5)*a(n-5)=0. - R. J. Mathar, Jul 24 2012
EXAMPLE
a(2)=2*1*6+2-1=13. a(3)=2*1*13+36+2+1-1=64.
MAPLE
l:=-1: : k := 1 : m:=6:d(0):=1:d(1):=m: for n from 1 to 30 do d(n+1):=sum(d(p)*d(n-p)+k, p=0..n)+l:od :
taylor((1-sqrt(1-4*z*(d(0)-z*d(0)^2+z*m+(k+l)*z^2/(1-z)+k*z^2/(1-z)^2)))/(2*z), z=0, 30); seq(d(n), n=0..30);
CROSSREFS
Cf. A176832.
Sequence in context: A262238 A111366 A177127 * A301605 A119110 A041305
KEYWORD
easy,nonn
AUTHOR
Richard Choulet, May 04 2010
STATUS
approved