login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Sequence defined by the recurrence formula a(n+1)=sum(a(p)*a(n-p)+k,p=0..n)+l for n>=1, with here a(0)=1, a(1)=6, k=1 and l=-1.
0

%I #5 Jan 20 2014 22:19:36

%S 1,6,13,64,287,1515,8143,46030,265909,1572193,9443997,57529101,

%T 354394057,2204333079,13823770729,87311462772,554904606279,

%U 3546103422655,22772157825695,146876986425311,951065019090195

%N Sequence defined by the recurrence formula a(n+1)=sum(a(p)*a(n-p)+k,p=0..n)+l for n>=1, with here a(0)=1, a(1)=6, k=1 and l=-1.

%F G.f f: f(z)=(1-sqrt(1-4*z*(a(0)-z*a(0)^2+z*a(1)+(k+l)*z^2/(1-z)+k*z^2/(1-z)^2)))/(2*z) (k=1, l=-1).

%F Conjecture: (n+1)*a(n) +(2-7*n)*a(n-1) +(19-5*n)*a(n-2) +(43*n-134)*a(n-3) +4*(53-13*n)*a(n-4) +20*(n-5)*a(n-5)=0. - _R. J. Mathar_, Jul 24 2012

%e a(2)=2*1*6+2-1=13. a(3)=2*1*13+36+2+1-1=64.

%p l:=-1: : k := 1 : m:=6:d(0):=1:d(1):=m: for n from 1 to 30 do d(n+1):=sum(d(p)*d(n-p)+k, p=0..n)+l:od :

%p taylor((1-sqrt(1-4*z*(d(0)-z*d(0)^2+z*m+(k+l)*z^2/(1-z)+k*z^2/(1-z)^2)))/(2*z), z=0, 30); seq(d(n), n=0..30);

%Y Cf. A176832.

%K easy,nonn

%O 0,2

%A _Richard Choulet_, May 04 2010