login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A176832
Sequence defined by the recurrence formula a(n+1)=sum(a(p)*a(n-p)+k,p=0..n)+l for n>=1, with here a(0)=1, a(1)=5, k=1 and l=-1.
1
1, 5, 11, 49, 211, 1037, 5267, 27953, 152075, 845709, 4780923, 27402033, 158842179, 929655949, 5485858531, 32603081969, 194973609467, 1172405681165, 7084340575307, 42994921155441, 261963852143283, 1601804565028621
OFFSET
0,2
FORMULA
G.f f: f(z)=(1-sqrt(1-4*z*(a(0)-z*a(0)^2+z*a(1)+(k+l)*z^2/(1-z)+k*z^2/(1-z)^2)))/(2*z) (k=1, l=-1).
Conjecture: (n+1)*a(n) +(-7*n+2)*a(n-1) +(-n+11)*a(n-2) +(31*n-98)*a(n-3) +4*(-10*n+41)*a(n-4) +16*(n-5)*a(n-5)=0. - R. J. Mathar, Feb 18 2016
EXAMPLE
a(2)=2*1*5+2-1=11. a(3)=2*1*11+2+5^2+1-1=49. a(4)=2*1*49+2+2*5*11+2-1=211.
MAPLE
l:=-1: : k := 1 : m:=5:d(0):=1:d(1):=m: for n from 1 to 30 do d(n+1):=sum(d(p)*d(n-p)+k, p=0..n)+l:od : taylor((1-sqrt(1-4*z*(d(0)-z*d(0)^2+z*m+(k+l)*z^2/(1-z)+k*z^2/(1-z)^2)))/(2*z), z=0, 30); seq(d(n), n=0..30);
CROSSREFS
Cf. A176830.
Sequence in context: A149519 A149520 A073415 * A289284 A149521 A149522
KEYWORD
easy,nonn
AUTHOR
Richard Choulet, Apr 27 2010
STATUS
approved