login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A177172
Sequence defined by the recurrence formula a(n+1)=sum(a(p)*a(n-p)+k,p=0..n)+l for n>=1, with here a(0)=1, a(1)=10, k=0 and l=-2.
0
1, 10, 18, 134, 626, 4254, 25850, 177270, 1192450, 8392846, 59270218, 427294630, 3103586514, 22805459262, 168767740698, 1258575706582, 9441189199010, 71224314198510, 539889535264490, 4110514381564422, 31418080601125746
OFFSET
0,2
FORMULA
G.f f: f(z)=(1-sqrt(1-4*z*(a(0)-z*a(0)^2+z*a(1)+(k+l)*z^2/(1-z)+k*z^2/(1-z)^2)))/(2*z) (k=0, l=-2).
Conjecture: (n+1)*a(n) +2*(-3*n+1)*a(n-1) +(-27*n+59)*a(n-2) +2*(38*n-117)*a(n-3) +44*(-n+4)*a(n-4)=0. - R. J. Mathar, Feb 21 2016
EXAMPLE
a(2)=2*1*10-2=18. a(3)=2*1*18+100-2=134.
MAPLE
l:=-2: : k := 0 : for m from 0 to 10 do d(0):=1:d(1):=m: for n from 1 to 30 do d(n+1):=sum(d(p)*d(n-p), p=0..n)-2:od :
taylor((1-sqrt(1-4*z*(d(0)-z*d(0)^2+z*m+(k+l)*z^2/(1-z)+k*z^2/(1-z)^2)))/(2*z), z=0, 30); seq(d(n), n=0..30): od;
CROSSREFS
Cf. A177171.
Sequence in context: A167342 A288781 A233451 * A358985 A171767 A153689
KEYWORD
easy,nonn
AUTHOR
Richard Choulet, May 04 2010
STATUS
approved