login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A131077
Antidiagonal sums of triangular array T: T(j,1) = 1 for ((j-1) mod 8) < 4, else 0; T(j,k) = T(j-1,k-1) + T(j,k-1) for 2 <= k <= j.
4
1, 1, 3, 3, 6, 5, 11, 8, 20, 14, 35, 24, 59, 41, 100, 77, 178, 162, 341, 364, 705, 837, 1542, 1915, 3458, 4282, 7741, 9280, 17021, 19461, 36482, 39559, 76042, 78218, 154261, 151184, 305445, 287509, 592954, 542223, 1135178, 1023210, 2158389, 1949312
OFFSET
1,3
FORMULA
G.f.: (1-4*x^2+6*x^4-x^5-4*x^6+3*x^7+x^8-3*x^9+x^10+2*x^11-x^12) / ((1-x)*(1-2*x^2)*(1+x^4)*(1-4*x^2+6*x^4-4*x^6+2*x^8)).
EXAMPLE
For first seven rows of T see A131074 or A129961.
PROG
(PARI) {m=44; M=matrix(m, m); for(j=1, m, M[j, 1]=if((j-1)%8<4, 1, 0)); for(k=2, m, for(j=k, m, M[j, k]=M[j-1, k-1]+M[j, k-1])); for(j=1, m, print1(sum(k=1, (j+1)\2, M[j-k+1, k]), ", "))}
(Magma) m:=44; M:=ZeroMatrix(IntegerRing(), m, m); for j:=1 to m do if (j-1) mod 8 lt 4 then M[j, 1]:=1; end if; end for; for k:=2 to m do for j:=k to m do M[j, k]:=M[j-1, k-1]+M[j, k-1]; end for; end for; [ &+[ M[j-k+1, k]: k in [1..(j+1) div 2] ]: j in [1..m] ];
CROSSREFS
Cf. A131074 (T read by rows), A129961 (main diagonal of T), A131075 (first subdiagonal of T), A131076 (row sums of T). First through sixth column of T are in A131078, A131079, A131080, A131081, A131082, A131083 resp.
Sequence in context: A102245 A038167 A307967 * A357897 A342511 A175520
KEYWORD
nonn
AUTHOR
Klaus Brockhaus, following a suggestion of Paul Curtz, Jun 14 2007
STATUS
approved