OFFSET
0,3
COMMENTS
FORMULA
a(n) = n * A006128(n).
EXAMPLE
For n = 6 the total number of parts in all partitions of 6 is equal to 35 so a(n) = 6 * 35 = 210. On the other hand, the sum of largest parts of all partitions of 6 is 1 + 2 + 3 + 2 + 4 + 3 + 5 + 2 + 4 + 3 + 6 = 35, so a(6) is also 6 * 35 = 210.
Illustration of three views of a three-dimensional model of partitions after 6th stage:
.
. y
.
. _ | _ _ _ _ _ _
. _|_| | |_ _ _ |
. | |_| | |_ _ _|_ |
. _|_|_| | |_ _ | |
. |_|_|_| | |_ _|_ _|_ |
. _|_|_| | |_ _ _ | |
. | | |_| | |_ _ _|_ | |
. _|_|_|_| | |_ _ | | |
. | | | |_| | |_ _|_ | | |
. _|_|_|_|_| | |_ _ | | | |
. _|_|_|_|_|_| | |_ | | | | |
. |_|_|_|_|_|_| | |_|_|_|_|_|_|
. z _ _ _ _ _ _ _ _|_ _ _ _ _ _ _ _ x
. | _ _ _ _ _ _
. | |_| | | | | |
. | |_ _| | | | |
. | |_ _ _| | | |
. | |_ _ _ _| | |
. | |_ _ _ _ _| |
. | |_ _ _ _ _ _|
. |
.
. z
.
MATHEMATICA
lim = 42; CoefficientList[Series[Sum[n x^n Product[1/(1 - x^k), {k, n}], {n, lim}], {x, 0, lim}], x] Range[0, lim] (* Michael De Vlieger, Jul 14 2015, after N. J. A. Sloane at A006128 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Omar E. Pol, May 31 2015
STATUS
approved