login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A194446
Number of parts in the n-th region of the set of partitions of j, if 1<=n<=A000041(j).
62
1, 2, 3, 1, 5, 1, 7, 1, 2, 1, 11, 1, 2, 1, 15, 1, 2, 1, 4, 1, 1, 22, 1, 2, 1, 4, 1, 2, 1, 30, 1, 2, 1, 4, 1, 1, 7, 1, 2, 1, 1, 42, 1, 2, 1, 4, 1, 2, 1, 8, 1, 1, 3, 1, 1, 56, 1, 2, 1, 4, 1, 1, 7, 1, 2, 1, 1, 12, 1, 2, 1, 4, 1, 2, 1, 1, 77, 1, 2, 1
OFFSET
1,2
COMMENTS
For the definition of "region" of the set of partitions of j, see A206437.
a(n) is also the number of positive integers in the n-th row of triangle A186114. a(n) is also the number of positive integers in the n-th row of triangle A193870.
Also triangle read by rows: T(j,k) = number of parts in the k-th region of the last section of the set of partitions of j. See example. For more information see A135010.
a(n) is also the length of the n-th vertical line segment in the minimalist diagram of regions and partitions. The length of the n-th horizontal line segment is A141285(n). See also A194447. - Omar E. Pol, Mar 04 2012
From Omar E. Pol, Aug 19 2013: (Start)
In order to construct this sequence with a cellular automaton we use the following rules: We start in the first quadrant of the square grid with no toothpicks. At stage n we place A141285(n) toothpicks of length 1 connected by their endpoints in horizontal direction starting from the point (0, n). Then we place toothpicks of length 1 connected by their endpoints in vertical direction starting from the exposed toothpick endpoint downward up to touch the structure or up to touch the x-axis. a(n) is the number of toothpicks in vertical direction added at n-th stage (see example section and A139250, A225600, A225610).
a(n) is also the length of the n-th descendent line segment in an infinite Dyck path in which the length of the n-th ascendent line segment is A141285(n). See Example section. For more information see A211978, A220517, A225600.
(End)
The equivalent sequence for compositions is A006519. - Omar E. Pol, Aug 22 2013
FORMULA
a(n) = A141285(n) - A194447(n). - Omar E. Pol, Mar 04 2012
EXAMPLE
Written as an irregular triangle the sequence begins:
1;
2;
3;
1, 5;
1, 7;
1, 2, 1, 11;
1, 2, 1, 15;
1, 2, 1, 4, 1, 1, 22;
1, 2, 1, 4, 1, 2, 1, 30;
1, 2, 1, 4, 1, 1, 7, 1, 2, 1, 1, 42;
1, 2, 1, 4, 1, 2, 1, 8, 1, 1, 3, 1, 1, 56;
1, 2, 1, 4, 1, 1, 7, 1, 2, 1, 1, 12, 1, 2, 1, 4, 1, 2, 1, 1, 77;
...
From Omar E. Pol, Aug 18 2013: (Start)
Illustration of initial terms (first seven regions):
. _ _ _ _ _
. _ _ _ |_ _ _ _ _|
. _ _ _ _ |_ _ _| |_ _|
. _ _ |_ _ _ _| |_|
. _ _ _ |_ _| |_ _| |_|
. _ _ |_ _ _| |_| |_|
. _ |_ _| |_| |_| |_|
. |_| |_| |_| |_| |_|
.
. 1 2 3 1 5 1 7
.
The next figure shows a minimalist diagram of the first seven regions. The n-th horizontal line segment has length A141285(n). a(n) is the length of the n-th vertical line segment, which is the vertical line segment ending in row n (see also A225610).
. _ _ _ _ _
. 7 _ _ _ |
. 6 _ _ _|_ |
. 5 _ _ | |
. 4 _ _|_ | |
. 3 _ _ | | |
. 2 _ | | | |
. 1 | | | | |
.
. 1 2 3 4 5
.
Illustration of initial terms from an infinite Dyck path in which the length of the n-th ascendent line segment is A141285(n). a(n) is the length of the n-th descendent line segment.
. /\
. / \
. /\ / \
. / \ / \
. /\ / \ /\/ \
. /\ / \ /\/ \ / 1 \
. /\/ \/ \/ 1 \/ \
. 1 2 3 5 7
.
(End)
MATHEMATICA
lex[n_]:=DeleteCases[Sort@PadRight[Reverse /@ IntegerPartitions@n], x_ /; x==0, 2];
A194446 = {}; l = {};
For[j = 1, j <= 30, j++,
mx = Max@lex[j][[j]]; AppendTo[l, mx];
For[i = j, i > 0, i--, If[l[[i]] > mx, Break[]]];
AppendTo[A194446, j - i];
];
A194446 (* Robert Price, Jul 25 2020 *)
CROSSREFS
Row j has length A187219(j). Right border gives A000041, j >= 1. Records give A000041, j >= 1. Row sums give A138137.
Sequence in context: A080305 A220137 A053815 * A251758 A250480 A326584
KEYWORD
nonn,tabf
AUTHOR
Omar E. Pol, Nov 26 2011
STATUS
approved