login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A326584
a(n) = gcd(n*N(n-1), D(n-1)), with N(n)/D(n) = B(n) the n-th Bernoulli number.
1
1, 2, 3, 1, 5, 1, 7, 1, 3, 1, 11, 1, 13, 1, 3, 1, 17, 1, 19, 1, 3, 1, 23, 1, 5, 1, 3, 1, 29, 1, 31, 1, 3, 1, 1, 1, 37, 1, 3, 1, 41, 1, 43, 1, 15, 1, 47, 1, 7, 1, 3, 1, 53, 1, 1, 1, 3, 1, 59, 1, 61, 1, 3, 1, 5, 1, 67, 1, 3, 1, 71, 1, 73, 1, 3, 1, 1, 1, 79, 1
OFFSET
1,2
COMMENTS
Conjectures:
(1) If n > 1 then a(n) = n <=> n is prime or Carmichael (A002997).
(2) If n is odd then a(n) = 1 <=> n = 1 or is a term of A121707.
(3) The fixed points of n^2/a(n) are exactly the numbers satisfying Korselt's criterion (compare A326578 and A324050).
LINKS
FORMULA
a(n) divides n, n/a(n) = A326478(n).
EXAMPLE
a(559) = 1 and 559 is in A121707.
a(561) = 561 and 561 is Carmichael.
a(563) = 563 and 563 is prime.
MAPLE
db := n -> denom(bernoulli(n)): nb := n -> numer(bernoulli(n)):
a := n -> igcd(n*nb(n-1), db(n-1)): seq(a(n), n=1..80);
MATHEMATICA
a[n_] := With[{b = BernoulliB[n-1]}, GCD[n Numerator[b], Denominator[b]]];
Array[a, 80] (* Jean-François Alcover, Jul 21 2019 *)
PROG
(PARI) a(n) = my(b=bernfrac(n-1)); gcd(n*numerator(b), denominator(b)); \\ Michel Marcus, Jul 19 2019
CROSSREFS
Cf. A000040, A002997, A121707, A027641/A027642 (Bernoulli), A324050 (Korselt).
Sequence in context: A194446 A251758 A250480 * A166333 A322966 A173239
KEYWORD
nonn
AUTHOR
Peter Luschny, Jul 19 2019
STATUS
approved