login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A256012
Number of partitions of n into distinct parts that are not squarefree.
16
1, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 2, 1, 0, 0, 2, 1, 1, 0, 3, 2, 1, 0, 4, 3, 1, 2, 5, 4, 2, 2, 6, 5, 3, 2, 9, 7, 4, 4, 11, 8, 5, 5, 13, 13, 7, 7, 17, 17, 9, 9, 22, 20, 15, 12, 27, 26, 19, 15, 33, 33, 23, 23, 41, 41, 30, 29, 49, 51, 39, 35, 65, 63, 50, 47, 79
OFFSET
0,13
COMMENTS
Conjecture: a(n) > 0 for n > 23.
LINKS
FORMULA
G.f.: Product_{k>=1} (1 + x^k)/(1 + mu(k)^2*x^k), where mu(k) is the Moebius function (A008683). - Ilya Gutkovskiy, Dec 30 2016
EXAMPLE
First nonsquarefree numbers: 4,8,9,12,16,18,20,24,25,27,28, ... hence
a(20) = #{20, 16+4, 12+8} = 3;
a(21) = #{12+9, 9+8+4} = 2;
a(22) = #{18+4} = 1;
a(23) = #{ } = 0;
a(24) = #{24, 20+4, 16+8, 12+8+4} = 4;
a(25) = #{25, 16+9, 12+9+4} = 3.
MAPLE
with(numtheory):
b:= proc(n, i) option remember;
`if`(i*(i+1)/2<n, 0, `if`(n=0, 1, b(n, i-1)+
`if`(i>n or issqrfree(i), 0, b(n-i, i-1))))
end:
a:= n-> b(n$2):
seq(a(n), n=0..100); # Alois P. Heinz, Jun 02 2015
MATHEMATICA
b[n_, i_] := b[n, i] = If[i*(i+1)/2<n, 0, If[n==0, 1, b[n, i-1] + If[i>n || SquareFreeQ[i], 0, b[n-i, i-1]]]]; a[n_] := b[n, n]; Table[a[n], {n, 0, 100}] (* Jean-François Alcover, Oct 22 2015, after Alois P. Heinz *)
PROG
(Haskell)
a256012 = p a013929_list where
p _ 0 = 1
p (k:ks) m = if m < k then 0 else p ks (m - k) + p ks m
CROSSREFS
KEYWORD
nonn
AUTHOR
Reinhard Zumkeller, Jun 01 2015
STATUS
approved