OFFSET
0,13
COMMENTS
Conjecture: a(n) > 0 for n > 23.
LINKS
Alois P. Heinz, Table of n, a(n) for n = 0..10000
FORMULA
G.f.: Product_{k>=1} (1 + x^k)/(1 + mu(k)^2*x^k), where mu(k) is the Moebius function (A008683). - Ilya Gutkovskiy, Dec 30 2016
EXAMPLE
First nonsquarefree numbers: 4,8,9,12,16,18,20,24,25,27,28, ... hence
a(20) = #{20, 16+4, 12+8} = 3;
a(21) = #{12+9, 9+8+4} = 2;
a(22) = #{18+4} = 1;
a(23) = #{ } = 0;
a(24) = #{24, 20+4, 16+8, 12+8+4} = 4;
a(25) = #{25, 16+9, 12+9+4} = 3.
MAPLE
with(numtheory):
b:= proc(n, i) option remember;
`if`(i*(i+1)/2<n, 0, `if`(n=0, 1, b(n, i-1)+
`if`(i>n or issqrfree(i), 0, b(n-i, i-1))))
end:
a:= n-> b(n$2):
seq(a(n), n=0..100); # Alois P. Heinz, Jun 02 2015
MATHEMATICA
b[n_, i_] := b[n, i] = If[i*(i+1)/2<n, 0, If[n==0, 1, b[n, i-1] + If[i>n || SquareFreeQ[i], 0, b[n-i, i-1]]]]; a[n_] := b[n, n]; Table[a[n], {n, 0, 100}] (* Jean-François Alcover, Oct 22 2015, after Alois P. Heinz *)
PROG
(Haskell)
a256012 = p a013929_list where
p _ 0 = 1
p (k:ks) m = if m < k then 0 else p ks (m - k) + p ks m
CROSSREFS
KEYWORD
nonn
AUTHOR
Reinhard Zumkeller, Jun 01 2015
STATUS
approved