login
A249808
Triangular table read by rows, a lower right triangular region of square array A(n,k) is the number of times prime p_k has occurred as the smallest prime factor of numbers 1..n.
3
0, 1, 0, 1, 1, 0, 2, 1, 0, 0, 2, 1, 1, 0, 0, 3, 1, 1, 0, 0, 0, 3, 1, 1, 1, 0, 0, 0, 4, 1, 1, 1, 0, 0, 0, 0, 4, 2, 1, 1, 0, 0, 0, 0, 0, 5, 2, 1, 1, 0, 0, 0, 0, 0, 0, 5, 2, 1, 1, 1, 0, 0, 0, 0, 0, 0, 6, 2, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 6, 2, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 7, 2, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 7, 3, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0
OFFSET
1,7
COMMENTS
Table is read by taking n terms from the beginning of row n: A(1,1), A(2,1), A(2,2), A(3,1), A(3,2), A(3,3), ...
See also A249809 for a version with extra zeros removed.
FORMULA
If row n = 1, A(n,k) = 0, otherwise A(n,k) = A(n-1,k) + [A055396(n) = k], where the subexpression with the Iverson bracket is 1 if the index of the smallest prime dividing n is equal to k, and 0 otherwise. This is a formula for a full square array containing mostly zeros. The terms of this sequence are those collected from the lower right triangle of that square array.
For n > 1, A078898(n) = A(n, A055396(n)).
EXAMPLE
The first eleven rows of this triangular table:
0;
1, 0;
1, 1, 0;
2, 1, 0, 0;
2, 1, 1, 0, 0;
3, 1, 1, 0, 0, 0;
3, 1, 1, 1, 0, 0, 0;
4, 1, 1, 1, 0, 0, 0, 0;
4, 2, 1, 1, 0, 0, 0, 0, 0;
5, 2, 1, 1, 0, 0, 0, 0, 0, 0;
5, 2, 1, 1, 1, 0, 0, 0, 0, 0, 0;
...
MATHEMATICA
FoldList[Append[MapAt[# + 1 &, #1, PrimePi@ FactorInteger[#2][[1, 1]]], 0] &, {0}, Range[2, 15]] // Flatten (* Michael De Vlieger, Nov 24 2017 *)
PROG
(Scheme)
(define (A249808 n) (A249808bi (A002024 n) (A002260 n)))
(define (A249808bi row col) (if (= 1 row) 0 (+ (A249808bi (- row 1) col) (if (= (A055396 row) col) 1 0))))
CROSSREFS
A249809 is a more compact version.
A004526 gives the left edge, A001477 the row sums.
Sequence in context: A125676 A291955 A291904 * A258453 A025874 A256012
KEYWORD
nonn,tabl
AUTHOR
Antti Karttunen, Nov 06 2014
STATUS
approved