login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of partitions of n into distinct parts that are not squarefree.
16

%I #25 Dec 31 2016 01:29:25

%S 1,0,0,0,1,0,0,0,1,1,0,0,2,1,0,0,2,1,1,0,3,2,1,0,4,3,1,2,5,4,2,2,6,5,

%T 3,2,9,7,4,4,11,8,5,5,13,13,7,7,17,17,9,9,22,20,15,12,27,26,19,15,33,

%U 33,23,23,41,41,30,29,49,51,39,35,65,63,50,47,79

%N Number of partitions of n into distinct parts that are not squarefree.

%C Conjecture: a(n) > 0 for n > 23.

%H Alois P. Heinz, <a href="/A256012/b256012.txt">Table of n, a(n) for n = 0..10000</a>

%F G.f.: Product_{k>=1} (1 + x^k)/(1 + mu(k)^2*x^k), where mu(k) is the Moebius function (A008683). - _Ilya Gutkovskiy_, Dec 30 2016

%e First nonsquarefree numbers: 4,8,9,12,16,18,20,24,25,27,28, ... hence

%e a(20) = #{20, 16+4, 12+8} = 3;

%e a(21) = #{12+9, 9+8+4} = 2;

%e a(22) = #{18+4} = 1;

%e a(23) = #{ } = 0;

%e a(24) = #{24, 20+4, 16+8, 12+8+4} = 4;

%e a(25) = #{25, 16+9, 12+9+4} = 3.

%p with(numtheory):

%p b:= proc(n, i) option remember;

%p `if`(i*(i+1)/2<n, 0, `if`(n=0, 1, b(n, i-1)+

%p `if`(i>n or issqrfree(i), 0, b(n-i, i-1))))

%p end:

%p a:= n-> b(n$2):

%p seq(a(n), n=0..100); # _Alois P. Heinz_, Jun 02 2015

%t b[n_, i_] := b[n, i] = If[i*(i+1)/2<n, 0, If[n==0, 1, b[n, i-1] + If[i>n || SquareFreeQ[i], 0, b[n-i, i-1]]]]; a[n_] := b[n, n]; Table[a[n], {n, 0, 100}] (* _Jean-François Alcover_, Oct 22 2015, after _Alois P. Heinz_ *)

%o (Haskell)

%o a256012 = p a013929_list where

%o p _ 0 = 1

%o p (k:ks) m = if m < k then 0 else p ks (m - k) + p ks m

%Y Cf. A013929, A114374, A087188.

%K nonn

%O 0,13

%A _Reinhard Zumkeller_, Jun 01 2015