OFFSET
0,2
COMMENTS
LINKS
G. C. Greubel, Table of n, a(n) for n = 0..1000
Michael Somos, Introduction to Ramanujan theta functions
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
FORMULA
Expansion of eta(q^2) * eta(q^3)^8 * eta(q^18) / (eta(q)^2 * eta(q^6)^4 * eta(q^9)^2) in powers of q.
Euler transform of period 18 sequence [ 2, 1, -6, 1, 2, -3, 2, 1, -4, 1, 2, -3, 2, 1, -6, 1, 2, -2, ...].
EXAMPLE
G.f. = 1 + 2*q + 4*q^2 - 2*q^4 - 8*q^5 + 4*q^8 - 4*q^9 - 4*q^10 + 4*q^13 + ...
MATHEMATICA
a[ n_] := SeriesCoefficient[ EllipticTheta[ 4, 0, q^3]^4 / (EllipticTheta[ 4, 0, q] EllipticTheta[ 4, 0, q^9]), {q, 0, n}];
PROG
(PARI) {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^2 + A) * eta(x^3 + A)^8 * eta(x^18 + A) / (eta(x + A)^2 * eta(x^6 + A)^4 * eta(x^9 + A)^2), n))};
(PARI) {a(n) = if( n<1, n==0, 2^(n%3) * (-1)^(n\3) * sumdiv(n, d, [0, 1, 2, -1][d%4 + 1] * if(d%9, 1, 4) * (-1)^((d%8==6) + n+d)))};
CROSSREFS
KEYWORD
sign
AUTHOR
Michael Somos, Jun 03 2015
STATUS
approved