login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A256014
Expansion of phi(-q^3)^4 / (phi(-q) * phi(-q^9)) in powers of q where phi() is a Ramanujan theta function.
2
1, 2, 4, 0, -2, -8, 0, 0, 4, -4, -4, 0, 0, 4, 0, 0, -2, -8, 4, 0, 8, 0, 0, 0, 0, 6, 8, 0, 0, -8, 0, 0, 4, 0, -4, 0, 4, 4, 0, 0, -4, -8, 0, 0, 0, -8, 0, 0, 0, 2, 12, 0, -4, -8, 0, 0, 0, 0, -4, 0, 0, 4, 0, 0, -2, -16, 0, 0, 8, 0, 0, 0, 4, 4, 8, 0, 0, 0, 0, 0, 8
OFFSET
0,2
COMMENTS
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
LINKS
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
FORMULA
Expansion of eta(q^2) * eta(q^3)^8 * eta(q^18) / (eta(q)^2 * eta(q^6)^4 * eta(q^9)^2) in powers of q.
Euler transform of period 18 sequence [ 2, 1, -6, 1, 2, -3, 2, 1, -4, 1, 2, -3, 2, 1, -6, 1, 2, -2, ...].
a(n) = (-1)^n * A256280(n). a(3*n + 1) = 2 * A258277(n). a(3*n + 2) = 4 * A258278(n). a(4*n) = A256280(n). a(4*n + 3) = a(9*n + 3) = a(9*n + 6) = 0.
a(6*n + 2) = 4 * A122865(n). a(6*n + 4) = -2 * A122856(n). a(9*n) = A104794(n). a(12*n + 1) = A002175(n). a(12*n + 5) = -8 * A121444(n).
EXAMPLE
G.f. = 1 + 2*q + 4*q^2 - 2*q^4 - 8*q^5 + 4*q^8 - 4*q^9 - 4*q^10 + 4*q^13 + ...
MATHEMATICA
a[ n_] := SeriesCoefficient[ EllipticTheta[ 4, 0, q^3]^4 / (EllipticTheta[ 4, 0, q] EllipticTheta[ 4, 0, q^9]), {q, 0, n}];
PROG
(PARI) {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^2 + A) * eta(x^3 + A)^8 * eta(x^18 + A) / (eta(x + A)^2 * eta(x^6 + A)^4 * eta(x^9 + A)^2), n))};
(PARI) {a(n) = if( n<1, n==0, 2^(n%3) * (-1)^(n\3) * sumdiv(n, d, [0, 1, 2, -1][d%4 + 1] * if(d%9, 1, 4) * (-1)^((d%8==6) + n+d)))};
KEYWORD
sign
AUTHOR
Michael Somos, Jun 03 2015
STATUS
approved