OFFSET
0,4
COMMENTS
LINKS
G. C. Greubel, Table of n, a(n) for n = 0..1000
Michael Somos, Introduction to Ramanujan theta functions
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
FORMULA
Expansion of chi(x) * f(x^3) * f(-x^6) in powers of x where chi(), f() are Ramanujan theta functions. - Michael Somos, Sep 02 2015
Expansion of q^(-1/3) * eta(q^2)^2 * et(q^6)^4 / (eta(q) * eta(q^3) * eta(q^4) * eta(q^12)) in powers of q.
Euler transform of period 12 sequence [1, -1, 2, 0, 1, -4, 1, 0, 2, -1, 1, -2, ...]. - Michael Somos, Apr 19 2007
G.f. is a period 1 Fourier series which satisfies f(-1 / (36 t)) = 2 (t/i) g(t) where q = exp(2 Pi i t) and g() is the g.f. for A258228. - Michael Somos, Sep 02 2015
a(n) = A002654(3*n + 1) = A035154(3*n + 1) = A113446(3*n + 1) = A122864(3*n + 1) = A163746(3*n + 1).
a(4*n) = A002175(n). a(4*n + 2) = 0. - Michael Somos, Jan 19 2017
EXAMPLE
G.f. = 1 + x + 2*x^3 + 2*x^4 + x^5 + 3*x^8 + 2*x^11 + 2*x^12 + 2*x^13 + ...
G.f. = q + q^4 + 2*q^10 + 2*q^13 + q^16 + 3*q^25 + 2*q^34 + 2*q^37 + ...
MATHEMATICA
phi[q_] := EllipticTheta[3, 0, q]; chi[q_] := ((1 - InverseEllipticNomeQ[q]) * InverseEllipticNomeQ[q]/(16*q))^(-1/24); psi[q_] := (1/2)*q^(-1/8)*EllipticTheta[ 2, 0, q^(1/2)]; s = Series[ chi[q]*phi[q^3]*psi[-q^3], {q, 0, 104}]; a[n_] := Coefficient[s, q, n];
(* or *) a[n_] := If[n == 0, 1, Sum[Boole[Mod[d, 4] == 1] - Boole[Mod[d, 4] == 3], {d, Divisors[3n+1]}]]; Table[a[n], {n, 0, 104}] (* Jean-François Alcover, Feb 17 2015, after PARI code *)
a[ n_] := If[ n < 0, 0, DivisorSum[ 3 n + 1, KroneckerSymbol[ -4, #] &]]; (* Michael Somos, Sep 02 2015 *)
a[ n_] := SeriesCoefficient[ QPochhammer[ -x, x^2] QPochhammer[ -x^3] QPochhammer[ x^6], {x, 0, n}]; (* Michael Somos, Sep 02 2015 *)
PROG
(PARI) {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^2 + A)^2 * eta(x^6 + A)^4 / (eta(x + A) * eta(x^3 + A) * eta(x^4 + A) * eta(x^12 + A)), n))};
(PARI) {a(n) = my(A, p, e); if(n <0, 0, n = 3*n+1; A = factor(n); prod(k=1, matsize(A)[1], [p, e] = A[k, ]; if(p==2, 1, p==3, -2*(-1)^e, p%4==1, e+1, 1-e%2)))};
(PARI) {a(n) = if( n<0, 0, n = 3*n+1; sumdiv(n, d, (d%4==1) - (d%4==3)))}; /* Michael Somos, Apr 19 2007 */
CROSSREFS
KEYWORD
nonn
AUTHOR
Michael Somos, Sep 15 2006
STATUS
approved