login
A122865
Expansion of chi(x) * phi(x^3) * psi(-x^3) in powers of x where chi(), phi(), psi() are Ramanujan theta functions.
31
1, 1, 0, 2, 2, 1, 0, 0, 3, 0, 0, 2, 2, 2, 0, 0, 1, 2, 0, 2, 2, 1, 0, 0, 2, 0, 0, 2, 4, 0, 0, 0, 2, 3, 0, 2, 2, 0, 0, 0, 1, 0, 0, 4, 0, 2, 0, 0, 4, 2, 0, 0, 2, 2, 0, 0, 3, 0, 0, 2, 2, 0, 0, 0, 2, 1, 0, 2, 4, 2, 0, 0, 0, 0, 0, 2, 2, 2, 0, 0, 2, 2, 0, 4, 0, 1, 0
OFFSET
0,4
COMMENTS
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
LINKS
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
FORMULA
Expansion of chi(x) * f(x^3) * f(-x^6) in powers of x where chi(), f() are Ramanujan theta functions. - Michael Somos, Sep 02 2015
Expansion of q^(-1/3) * eta(q^2)^2 * et(q^6)^4 / (eta(q) * eta(q^3) * eta(q^4) * eta(q^12)) in powers of q.
Euler transform of period 12 sequence [1, -1, 2, 0, 1, -4, 1, 0, 2, -1, 1, -2, ...]. - Michael Somos, Apr 19 2007
G.f. is a period 1 Fourier series which satisfies f(-1 / (36 t)) = 2 (t/i) g(t) where q = exp(2 Pi i t) and g() is the g.f. for A258228. - Michael Somos, Sep 02 2015
a(n) = A002654(3*n + 1) = A035154(3*n + 1) = A113446(3*n + 1) = A122864(3*n + 1) = A163746(3*n + 1).
a(n) = (-1)^n * A258277(n). a(2*n + 1) = A122856(n). - Michael Somos, Sep 02 2015
a(4*n) = A002175(n). a(4*n + 2) = 0. - Michael Somos, Jan 19 2017
EXAMPLE
G.f. = 1 + x + 2*x^3 + 2*x^4 + x^5 + 3*x^8 + 2*x^11 + 2*x^12 + 2*x^13 + ...
G.f. = q + q^4 + 2*q^10 + 2*q^13 + q^16 + 3*q^25 + 2*q^34 + 2*q^37 + ...
MATHEMATICA
phi[q_] := EllipticTheta[3, 0, q]; chi[q_] := ((1 - InverseEllipticNomeQ[q]) * InverseEllipticNomeQ[q]/(16*q))^(-1/24); psi[q_] := (1/2)*q^(-1/8)*EllipticTheta[ 2, 0, q^(1/2)]; s = Series[ chi[q]*phi[q^3]*psi[-q^3], {q, 0, 104}]; a[n_] := Coefficient[s, q, n];
(* or *) a[n_] := If[n == 0, 1, Sum[Boole[Mod[d, 4] == 1] - Boole[Mod[d, 4] == 3], {d, Divisors[3n+1]}]]; Table[a[n], {n, 0, 104}] (* Jean-François Alcover, Feb 17 2015, after PARI code *)
a[ n_] := If[ n < 0, 0, DivisorSum[ 3 n + 1, KroneckerSymbol[ -4, #] &]]; (* Michael Somos, Sep 02 2015 *)
a[ n_] := SeriesCoefficient[ QPochhammer[ -x, x^2] QPochhammer[ -x^3] QPochhammer[ x^6], {x, 0, n}]; (* Michael Somos, Sep 02 2015 *)
PROG
(PARI) {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^2 + A)^2 * eta(x^6 + A)^4 / (eta(x + A) * eta(x^3 + A) * eta(x^4 + A) * eta(x^12 + A)), n))};
(PARI) {a(n) = my(A, p, e); if(n <0, 0, n = 3*n+1; A = factor(n); prod(k=1, matsize(A)[1], [p, e] = A[k, ]; if(p==2, 1, p==3, -2*(-1)^e, p%4==1, e+1, 1-e%2)))};
(PARI) {a(n) = if( n<0, 0, n = 3*n+1; sumdiv(n, d, (d%4==1) - (d%4==3)))}; /* Michael Somos, Apr 19 2007 */
KEYWORD
nonn
AUTHOR
Michael Somos, Sep 15 2006
STATUS
approved