login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A108040
Reflection of triangle in A008280 in vertical axis.
5
1, 1, 0, 0, 1, 1, 2, 2, 1, 0, 0, 2, 4, 5, 5, 16, 16, 14, 10, 5, 0, 0, 16, 32, 46, 56, 61, 61, 272, 272, 256, 224, 178, 122, 61, 0, 0, 272, 544, 800, 1024, 1202, 1324, 1385, 1385, 7936, 7936, 7664, 7120, 6320, 5296, 4094, 2770, 1385, 0, 0, 7936, 15872, 23536, 30656
OFFSET
0,7
LINKS
Dominique Foata and Guo-Niu Han, André Permutation Calculus; a Twin Seidel Matrix Sequence, arXiv:1601.04371 [math.CO], 2016.
G. Viennot, Interprétations combinatoires des nombres d'Euler et de Genocchi, Séminaire de théorie des nombres, 1980/1981, Exp.No. 11, p. 41, Univ. Bordeaux I, Talence, 1982.
FORMULA
a(n,k) = A008280(n,n-k). - R. J. Mathar, May 02 2007
EXAMPLE
This version of the triangle begins:
.............1
...........1...0
.........0...1...1
.......2...2...1...0
.....0...2...4...5...5
..16..16..14..10...5...0
Kempner tableau begins:
....................1
....................1....0
...............0....1....1
...............2....2....1....0
..........0....2....4....5....5
.........16...16...14...10....5...0
.....0...16...32...46...56...61..61
...272..272..256..224..178..122..61..0
Column 1,1,1,2,4,14,46,224, ... is A005437.
Column 1,1,5,10,56,178, ... is A005438.
MAPLE
A008281 := proc(h, k) option remember ; if h=1 and k=1 or h=0 then RETURN(1) ; elif h>=1 and k> h then RETURN(0) ; elif h=k then RETURN( A008281(h, h-1)) ; else RETURN( add(A008281(h-1, j), j=h-k..h-1) ) ; fi ; end: A008280 := proc(h, k) if ( h <= 1 ) or ( h mod 2) = 1 then A008281(h, k) ; else A008281(h, h-k) ; fi ; end: A108040 := proc(h, k) A008280(h, h-k) ; end: for h from 0 to 13 do for k from 0 to h do printf("%d, ", A108040(h, k)) ; od ; od ; # R. J. Mathar, May 02 2007
MATHEMATICA
max = 11; t[0, 0] = 1; t[n_, m_] /; n<m || m<0 = 0; t[n_, m_] := t[n, m] = Sum[t[n-1, n-k], {k, m}]; tri = Table[t[n, m], {n, 0, max}, {m, 0, n}]; A008280 = {Reverse[#[[1]]], #[[2]]}& /@ Partition[tri, 2] // Flatten[#, 1]&; A108040 = Reverse /@ A008280; A108040 // Flatten (* Jean-François Alcover, Jan 08 2014 *)
T[0, 0]:=1; T[n_?OddQ, k_]/; 0<=k<=n := T[n, k]=T[n, k+1]+T[n-1, k]; T[n_?EvenQ, k_]/; 0<=k<=n := T[n, k]=T[n, k-1]+T[n-1, k-1]; T[n_, k_] := 0; Flatten@Table[T[n, k], {n, 0, 10}, {k, 0, n}] (* Oliver Seipel, Nov 24 2024 *)
PROG
(Haskell)
a108040 n k = a108040_tabl !! n !! k
a108040_row n = a108040_tabl !! k
a108040_tabl = ox False a008281_tabl where
ox turn (xs:xss) = (if turn then reverse xs else xs) : ox (not turn) xss
-- Reinhard Zumkeller, Nov 01 2013
(Python) # Uses function seidel from A008281.
def A108040row(n): return seidel(n)[::-1] if n % 2 else seidel(n)
for n in range(8): print(A108040row(n)) # Peter Luschny, Jun 01 2022
CROSSREFS
See A008280 and A008281 for other versions, additional references, formulas, etc.
Sequence in context: A133418 A181169 A029390 * A137566 A258277 A122865
KEYWORD
nonn,tabl,easy
EXTENSIONS
More terms from R. J. Mathar, May 02 2007
STATUS
approved