login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A352988
Matrix inverse of triangle A352650.
1
1, 0, 1, -1, -1, 1, 0, -2, -2, 1, 0, 0, -3, -3, 1, 0, 0, 0, -4, -4, 1, 0, 0, 0, 0, -5, -5, 1, 0, 0, 0, 0, 0, -6, -6, 1, 0, 0, 0, 0, 0, 0, -7, -7, 1, 0, 0, 0, 0, 0, 0, 0, -8, -8, 1, 0, 0, 0, 0, 0, 0, 0, 0, -9, -9, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, -10, -10, 1
OFFSET
0,8
FORMULA
T(n,n) = 1 for n >= 0, and T(n,n-1) = 1 - n for n > 0, and T(n,n-2) = 1 - n for n > 1, and T(n,k) = 0 if n < 0 or k < 0 or n < k or n > k+2.
G.f.: Sum_{n>=0, k=0..n} T(n,k) * x^k * t^n = (1 + t) * (1 - (1 + x) * t) / (1 - x * t)^2.
Alt. row sums equal (-1)^n for n >= 0.
Matrix product with A094587 yields A097806.
EXAMPLE
The triangle T(n,k) for 0 <= k <= n starts:
n\k : 0 1 2 3 4 5 6 7 8 9
======================================================
0 : 1
1 : 0 1
2 : -1 -1 1
3 : 0 -2 -2 1
4 : 0 0 -3 -3 1
5 : 0 0 0 -4 -4 1
6 : 0 0 0 0 -5 -5 1
7 : 0 0 0 0 0 -6 -6 1
8 : 0 0 0 0 0 0 -7 -7 1
9 : 0 0 0 0 0 0 0 -8 -8 1
etc.
CROSSREFS
KEYWORD
sign,easy,tabl
AUTHOR
Werner Schulte, Apr 13 2022
STATUS
approved