login
A074080
Triangle T(n,k) (listed in order T(1,0), T(2,0), T(2,1), T(3,0), T(3,1), T(3,2), T(4,0), etc.) giving the number of 2^k-cycles that occur in the n-th sub-permutation of A069767/A069768 (i.e., in the range [A014137(n-1)..A014138(n-1)] inclusive).
7
1, 0, 1, 1, 0, 1, 0, 1, 1, 1, 0, 1, 2, 2, 1, 0, 0, 3, 5, 3, 1, 1, 0, 3, 10, 9, 4, 1, 0, 1, 3, 17, 24, 14, 5, 1, 0, 1, 3, 28, 57, 44, 20, 6, 1, 0, 0, 5, 41, 128, 128, 71, 27, 7, 1, 0, 1, 4, 60, 271, 354, 234, 106, 35, 8, 1, 0, 0, 5, 81, 549, 937, 738, 384, 150, 44, 9, 1, 0, 0, 5, 106, 1061
OFFSET
0,13
EXAMPLE
If we take the fifth such sub-permutation, i.e., the subsequence A069767[23..64]: [45,46,48,49,50,54,55,57,58,59,61,62,63,64,44,47,53,56,60,43,52,40,31,32,41,34,35,36,42,51,39,30,33,38,29,26,27,37,28,25,24,23], subtract 22 from each term and convert the resulting permutation of [1..42] to disjoint cycle notation, we get:
(17,31),(20,21,30,29),(3,26,12,40),(6,32,8,35,7,33,11,39),(15,22,18,34,16,25,19,38),(1,23,9,36,4,27,13,41,2,24,10,37,5,28,14,42)
which implies that T(5,0) = 0 (no fixed elements), T(5,1) = 1 (one transposition), T(5,2) = 2 (two 4-cycles), T(5,3) = 2 (two 8-cycles), T(5,4) = 1 (and one 16-cycle). It is guaranteed that only cycles whose length is a power of 2 occur in A069767/A069768.
MAPLE
A074079bi := (n, k) -> A073346bi(n, k)/(2^k);
A074080 := n -> A074079bi(A003056(n)+1, A002262(n));
A003056 := n -> floor(sqrt(2*(1+n))-(1/2));
A002262 := n -> n - binomial(floor((1/2)+sqrt(2*(1+n))), 2);
CROSSREFS
Upper triangular region of the square array A074079 (actually, only the area above its main diagonal, excluding also the leftmost column). T(n, k) = A073430(n, k)/(2^k) [with the rightmost edge of A073430 discarded]. Row sums: A073431. A000108(n) = Sum_{i=0..n-1} 2^i * T(n, i). Cf. A073346, A003056, A002262.
Sequence in context: A246656 A352988 A334493 * A359440 A347687 A368948
KEYWORD
nonn,tabl
AUTHOR
Antti Karttunen, Aug 19 2002
STATUS
approved