login
A073346
Table T(n,k) (listed antidiagonalwise in order T(0,0), T(1,0), T(0,1), T(2,0), T(1,1), ...) giving the number of rooted plane binary trees of size n and "contracted height" k.
12
1, 1, 0, 0, 0, 0, 1, 2, 0, 0, 0, 0, 0, 0, 0, 0, 2, 4, 0, 0, 0, 0, 2, 4, 0, 0, 0, 0, 1, 0, 8, 8, 0, 0, 0, 0, 0, 0, 12, 16, 0, 0, 0, 0, 0, 0, 2, 12, 40, 16, 0, 0, 0, 0, 0, 0, 2, 12, 80, 48, 0, 0, 0, 0, 0, 0, 0, 0, 12, 136, 144, 32, 0, 0, 0, 0, 0, 0, 0, 2, 20, 224, 384, 128, 0, 0, 0, 0, 0, 0, 0, 0, 0, 16
OFFSET
0,8
COMMENTS
The height of binary trees is computed here in the same way as in A073345, except that whenever a complete binary tree of (2^k)-1 nodes with all its leaves at the same level, i.e., one of the following trees:
____________________\/\/\/\/_
_____________\/__\/__\/__\/__
______________\__/____\_ /___
____.____\/____\/______\/____ etc.
is encountered as a terminating subtree, it is regarded just a variant of . (an empty tree, a single leaf) and contributes nothing to the height of the tree.
FORMULA
(See the Maple code below. Note that here we use the same convolution recurrence as with A073345, but only the initial conditions for the first two rows (k=0 and k=1) are different. Is there a nicer formula?)
EXAMPLE
The top-left corner of this square array:
1 1 0 1 0 0 0 1 ...
0 0 2 0 2 2 0 0 ...
0 0 0 4 4 8 12 12 ...
0 0 0 0 8 16 40 80 ...
MAPLE
A073346 := n -> A073346bi(A025581(n), A002262(n));
A073346bi := proc(n, k) option remember; local i, j; if(0 = k) then RETURN(A036987(n)); fi; if(0 = n) then RETURN(0); fi; 2 * add(A073346bi(n-i-1, k-1) * add(A073346bi(i, j), j=0..(k-1)), i=0..floor((n-1)/2)) + 2 * add(A073346bi(n-i-1, k-1) * add(A073346bi(i, j), j=0..(k-2)), i=(floor((n-1)/2)+1)..(n-1)) - (`mod`(n, 2))*(A073346bi(floor((n-1)/2), k-1)^2) - (`if`((1=k), 1, 0))*A036987(n); end;
A025581 := n -> binomial(1+floor((1/2)+sqrt(2*(1+n))), 2) - (n+1);
A002262 := n -> n - binomial(floor((1/2)+sqrt(2*(1+n))), 2);
CROSSREFS
Variant: A073345. The first row: A036987. Column sums: A000108. Diagonals: T(n, n) = A000007(n), T(n+1, n) = A000079(n), T(n+2, n) = A058922(n), T(n+3, n) = A074092(n) - [see the attached notes.].
A073430 gives the upper triangular region of this array. Used to compute A073431. Entries on row k are all divisible by 2^k, thus dividing them out yields the array/triangle A074079/A074080.
Sequence in context: A255365 A256505 A337196 * A114099 A028613 A318381
KEYWORD
nonn,tabl
AUTHOR
Antti Karttunen, Jul 31 2002
EXTENSIONS
Sequence number in comments corrected
STATUS
approved