login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A073345
Table T(n,k), read by ascending antidiagonals, giving the number of rooted plane binary trees of size n and height k.
12
1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 6, 0, 0, 0, 0, 0, 0, 0, 6, 8, 0, 0, 0, 0, 0, 0, 0, 4, 20, 0, 0, 0, 0, 0, 0, 0, 0, 1, 40, 16, 0, 0, 0, 0, 0, 0, 0, 0, 0, 68, 56, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 94, 152, 32, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 114, 376, 144, 0, 0, 0, 0, 0, 0, 0
OFFSET
0,13
REFERENCES
Luo Jian-Jin, Catalan numbers in the history of mathematics in China, in Combinatorics and Graph Theory, (Yap, Ku, Lloyd, Wang, Editors), World Scientific, River Edge, NJ, 1995.
FORMULA
(See the Maple code below. Is there a nicer formula?)
This table was known to the Chinese mathematician Ming An-Tu, who gave the following recurrence in the 1730s. a(0, 0) = 1, a(n, k) = Sum[a(n-1, k-1-i)( 2*Sum[ a(j, i), {j, 0, n-2}]+a(n-1, i) ), {i, 0, k-1}]. - David Callan, Aug 17 2004
The generating function for row n, T_n(x):=Sum[T(n, k)x^k, k>=0], is given by T_n = a(n)-a(n-1) where a(n) is defined by the recurrence a(0)=0, a(1)=1, a(n) = 1 + x a(n-1)^2 for n>=2. - David Callan, Oct 08 2005
EXAMPLE
The top-left corner of this square array is
1 0 0 0 0 0 0 0 0 ...
0 1 0 0 0 0 0 0 0 ...
0 0 2 1 0 0 0 0 0 ...
0 0 0 4 6 6 4 1 0 ...
0 0 0 0 8 20 40 68 94 ...
E.g. we have A000108(3) = 5 binary trees built from 3 non-leaf (i.e. branching) nodes:
_______________________________3
___\/__\/____\/__\/____________2
__\/____\/__\/____\/____\/_\/__1
_\/____\/____\/____\/____\./___0
The first four have height 3 and the last one has height 2, thus T(3,3) = 4, T(3,2) = 1 and T(3,any other value of k) = 0.
MAPLE
A073345 := n -> A073345bi(A025581(n), A002262(n));
A073345bi := proc(n, k) option remember; local i, j; if(0 = n) then if(0 = k) then RETURN(1); else RETURN(0); fi; fi; if(0 = k) then RETURN(0); fi; 2 * add(A073345bi(n-i-1, k-1) * add(A073345bi(i, j), j=0..(k-1)), i=0..floor((n-1)/2)) + 2 * add(A073345bi(n-i-1, k-1) * add(A073345bi(i, j), j=0..(k-2)), i=(floor((n-1)/2)+1)..(n-1)) - (`mod`(n, 2))*(A073345bi(floor((n-1)/2), k-1)^2); end;
A025581 := n -> binomial(1+floor((1/2)+sqrt(2*(1+n))), 2) - (n+1);
A002262 := n -> n - binomial(floor((1/2)+sqrt(2*(1+n))), 2);
MATHEMATICA
a[0, 0] = 1; a[n_, k_]/; k<n||k>2^n-1 := 0; a[n_, k_]/; 1 <= n <= k <= 2^n-1 := a[n, k] = Sum[a[n-1, k-1-i](2Sum[ a[j, i], {j, 0, n-2}]+a[n-1, i]), {i, 0, k-1}]; Table[a[n, k], {n, 0, 9}, {k, 0, 9}]
(* or *) a[0] = 0; a[1] = 1; a[n_]/; n>=2 := a[n] = Expand[1 + x a[n-1]^2]; gfT[n_] := a[n]-a[n-1]; Map[CoefficientList[ #, x, 8]&, Table[gfT[n], {n, 9}]/.{x^i_/; i>=9 ->0}] (Callan)
CROSSREFS
Variant: A073346. Column sums: A000108. Row sums: A001699.
Diagonals: A073345(n, n) = A011782(n), A073345(n+3, n+2) = A014480(n), A073345(n+2, n) = A073773(n), A073345(n+3, n) = A073774(n) - Henry Bottomley and AK, see the attached notes.
A073429 gives the upper triangular region of this array. Cf. also A065329, A001263.
Sequence in context: A279372 A086077 A178408 * A216511 A138088 A112765
KEYWORD
nonn,tabl
AUTHOR
Antti Karttunen, Jul 31 2002
STATUS
approved