login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A028613
Expansion of theta_3(q) * theta_3(q^12) + theta_2(q) * theta_2(q^12) in powers of q^(1/4).
0
1, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 4, 0, 0, 2, 0, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 0, 4, 0, 0, 6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0
OFFSET
0,5
FORMULA
a(4*n + 2) = a(4*n + 3) = a(8*n + 1) = a(16*n + 8) = a(16*n + 12) = 0. - Michael Somos, Feb 22 2015
a(8*n + 5) = 4*A112607(n-1). a(16*n) = A033716(n). a(16*n + 4) = 2*A112604(n). - Michael Somos, Feb 22 2015
EXAMPLE
G.f. = 1 + 2*x^4 + 4*x^13 + 2*x^16 + 4*x^21 + 2*x^36 + 4*x^37 + 2*x^48 + ...
G.f. = 1 + 2*q + 4*q^(13/4) + 2*q^4 + 4*q^(21/4) + 2*q^9 + 4*q^(37/4) + 2*q^12 + ...
MATHEMATICA
a[ n_] := SeriesCoefficient[ EllipticTheta[ 3, 0, x] EllipticTheta[ 3, 0, x^12] + EllipticTheta[ 2, 0, x] EllipticTheta[ 2, 0, x^12], {x, 0, n/4}]; (* Michael Somos, Feb 22 2015 *)
PROG
(PARI) {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( (eta(x^8 + A) * eta(x^96+A))^5 / (eta(x^4 + A) * eta(x^16 + A) * eta(x^48 + A) * eta(x^192 + A))^2 + 4*x^13 * (eta(x^16 + A) * eta(x^192 + A))^2 / (eta(x^8 + A) * eta(x^96 + A)), n))};
CROSSREFS
KEYWORD
nonn
AUTHOR
STATUS
approved