login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A245515
a(n) = n*floor(mod((gcd(n, Fibonacci((-1)^n + n))), 1 + n)/n) for n>=2.
1
1, 2, 0, 0, 0, 0, 0, 0, 0, 0, 11, 0, 0, 0, 0, 0, 0, 0, 19, 0, 0, 0, 0, 0, 0, 0, 0, 0, 29, 0, 31, 0, 0, 0, 0, 0, 0, 0, 0, 0, 41, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 59, 0, 61, 0, 0, 0, 0, 0, 0, 0, 0, 0, 71, 0, 0, 0, 0, 0, 0, 0, 79, 0, 0, 0, 0, 0, 0
OFFSET
1,2
COMMENTS
Sequence with many prime numbers and zeros.
The primes occurring in this sequence are given in A064739. The subsequence of composite numbers starts 1891, 2737, 2834, 4181, 6601, 6721, 8149, 13201, 13981, ... - Joerg Arndt, Nov 19 2017
LINKS
Charles R Greathouse IV, Table of n, a(n) for n = 1..10000
José de Jesús Camacho Medina, Table with 140 first nonzero terms of this sequence (Una interesante fórmula generadora de 140 primos).
FORMULA
a(n) = n*floor(mod((gcd(n, fibonacci((-1)^n + n))), 1 + n)/n) for n>=1.
EXAMPLE
For n=1, a(1)=1; for n=2, a(2)=2.
MAPLE
f:= n -> n*floor(modp((igcd(n, combinat:-fibonacci((-1)^n + n))), 1 + n)/n):
seq(f(n), n=1..100); # Robert Israel, Jul 25 2014
MATHEMATICA
Table[n*Floor[Mod[(GCD[n, Fibonacci[(-1)^n + n]]), 1 + n]/n], {n, 1, 1890}]
PROG
(PARI) a(n) = n*((gcd(n, fibonacci((-1)^n + n)) % (1 + n))\n); \\ Michel Marcus, Jul 25 2014
(PARI) a(n)=gcd(n, lift(((Mod([1, 1; 1, 0], n))^(n+(-1)^n))[1, 2]))\n*n \\ Charles R Greathouse IV, Jul 25 2014
(Magma) [n*((Gcd(n, Fibonacci((-1)^n+n)) mod (1+n)) div n): n in [1..100]]; // Vincenzo Librandi, Dec 17 2016
CROSSREFS
Sequence in context: A028613 A318381 A341755 * A366125 A327170 A024362
KEYWORD
nonn
AUTHOR
STATUS
approved