

A327170


Number of divisors d of n such that A327171(d) (= phi(d)*core(d)) is equal to n.


3



1, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 2, 0, 1, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,12


COMMENTS

From any solution (*) to A327171(d) = d*phi(d) = n, we obtain a solution for core(d')*phi(d') = n by forming a "pumped up" version d' of d, by replacing each exponent e_i in the prime factorization of d = p_1^e_1 * p_2^e_2 * ... * p_k^e_k, with exponent 2*e_i  1 so that d' = p_1^(2*e_1  1) * p_2^(2*e_2  1)* ... * p_k^(2*e_k  1) = A102631(d) = d*A003557(d), and this d' is also a divisor of n, as n = d' * A173557(d). Generally, any product m = p_1^(2*e_1  x) * p_2^(2*e_2  y)* ... * p_k^(2*e_k  z), where each x, y, ..., z is either 0 or 1 gives a solution for core(m)*phi(m) = n, thus every nonzero term in this sequence is a power of 2, even though not all such m's might be divisors of n.
(* by necessity unique, see Franz Vrabec's Dec 12 2012 comment in A002618).
On the other hand, if we have any solution d for core(d)*phi(d) = n, we can find the unique such divisor e of d that e*phi(e) = n by setting e = A019554(d).
Thus, it follows that the nonzero terms in this sequence occur exactly at positions given by A082473.
Records (1, 2, 4, 8, 16, ...) occur at n = 1, 12, 504, 223200, 50097600, ...


LINKS

Antti Karttunen, Table of n, a(n) for n = 1..65537


FORMULA

a(n) = Sum_{dn} [A000010(d)*A007913(d) == n], where [ ] is the Iverson bracket.


EXAMPLE

For n = 504 = 2^3 * 3^2 * 7, it has 24 divisors, out of which four divisors: 42 (= 2^1 * 3^1 * 7^1), 84 (= 2^2 * 3^1 * 7^1), 126 (= 2^1 * 3^2 * 7^1), 252 (= 2^2 * 3^2 * 7^1) are such that A007913(d)*A000010(d) = 504, thus a(504) = 4.


MATHEMATICA

With[{s = Array[EulerPhi[#] (Sqrt@ # /. (c_: 1) a_^(b_: 0) :> (c a^b)^2) &, 120]}, Table[DivisorSum[n, 1 &, s[[#]] == n &], {n, Length@ s}]] (* Michael De Vlieger, Sep 29 2019, after Bill Gosper at A007913 *)


PROG

(PARI) A327170(n) = sumdiv(n, d, eulerphi(d)*core(d) == n);


CROSSREFS

Cf. A000010, A002618, A003557, A007913, A019554, A082473, A102631, A173557, A194507, A327171.
Cf. also A327153, A327166, A327169.
Sequence in context: A318381 A341755 A245515 * A024362 A104488 A244413
Adjacent sequences: A327167 A327168 A327169 * A327171 A327172 A327173


KEYWORD

nonn


AUTHOR

Antti Karttunen, Sep 28 2019


STATUS

approved



