OFFSET
1,2
COMMENTS
A note on square roots of numbers: we can write sqrt(n) = b*sqrt(c) where c is squarefree. Then b = A000188(n) is the "inner square root" of n, c = A007913(n), lcm(b,c) = A007947(n) = "squarefree kernel" of n and bc = A019554(n) = "outer square root" of n. [The relation with LCM is wrong if b is not squarefree. One must, e.g., replace b with A007947(b). - M. F. Hasler, Mar 03 2018]
Instead of the terms "inner square root" and "outer square root", we may use the terms "lower square root" and "upper square root", respectively. Upper k-th roots have been studied by Broughan (2002, 2003, 2006). - Petros Hadjicostas, Sep 15 2019
The number of times each number k appears in this sequence is A034444(k). The first time k appears is at position A102631(k). - N. J. A. Sloane, Jul 28 2021
LINKS
T. D. Noe, Table of n, a(n) for n = 1..10000
Henry Bottomley, Some Smarandache-type multiplicative sequences.
Kevin A. Broughan, Restricted divisor sums, Acta Arithmetica, 101(2) (2002), 105-114. See also here for another copy.
Kevin A. Broughan, Relationship between the integer conductor and k-th root functions, Int. J. Pure Appl. Math. 5(3) (2003), 253-275.
Kevin A. Broughan, Relaxations of the ABC Conjecture using integer k'th roots, New Zealand J. Math. 35(2) (2006), 121-136.
Florentin Smarandache, Collected Papers, Vol. II, Tempus Publ. Hse, Bucharest, 1996.
Eric Weisstein's World of Mathematics, Smarandache Ceil Function.
FORMULA
Replace any square factors in n by their square roots.
Multiplicative with a(p^e) = p^ceiling(e/2).
Dirichlet series:
Sum_{n>=1} a(n)/n^s = zeta(2*s-1)*zeta(s-1)/zeta(2*s-2), (Re(s) > 2);
Sum_{n>=1} (1/a(n))/n^s = zeta(2*s+1)*zeta(s+1)/zeta(2*s+2), (Re(s) > 0).
a(n) = n/A000188(n).
a(n) = denominator of n/n^(3/2). - Arkadiusz Wesolowski, Dec 04 2011
a(n) = Product_{k=1..A001221(n)} A027748(n,k)^ceiling(A124010(n,k)/2). - Reinhard Zumkeller, Apr 13 2013
Sum_{k=1..n} a(k) ~ 3*zeta(3)*n^2 / Pi^2. - Vaclav Kotesovec, Sep 18 2020
Sum_{k=1..n} 1/a(k) ~ 3*log(n)^2/(2*Pi^2) + (9*gamma/Pi^2 - 36*zeta'(2)/Pi^4)*log(n) + 6*gamma^2/Pi^2 - 108*gamma*zeta'(2)/Pi^4 + 432*zeta'(2)^2/Pi^6 - 36*zeta''(2)/Pi^4 - 15*sg1/Pi^2, where gamma is the Euler-Mascheroni constant A001620 and sg1 is the first Stieltjes constant (see A082633). - Vaclav Kotesovec, Jul 27 2021
a(n) = sqrt(n*A007913(n)). - Jianing Song, May 08 2022
a(n) = sqrt(A053143(n)). - Amiram Eldar, Sep 02 2023
MAPLE
with(numtheory):A019554 := proc(n) local i: RETURN(op(mul(i, i=map(x->x[1]^ceil(x[2]/2), ifactors(n)[2])))); end;
MATHEMATICA
Flatten[Table[Select[Range[n], Divisible[#^2, n]&, 1], {n, 100}]] (* Harvey P. Dale, Oct 17 2011 *)
f[p_, e_] := p^Ceiling[e/2]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Sep 18 2020 *)
PROG
(PARI) a(n)=n/core(n, 1)[2] \\ Charles R Greathouse IV, Feb 24 2011
(Haskell)
a019554 n = product $ zipWith (^)
(a027748_row n) (map ((`div` 2) . (+ 1)) $ a124010_row n)
-- Reinhard Zumkeller, Apr 13 2013
(Python 3.8+)
from math import prod
from sympy import factorint
def A019554(n): return n//prod(p**(q//2) for p, q in factorint(n).items()) # Chai Wah Wu, Aug 18 2021
CROSSREFS
KEYWORD
nonn,easy,mult,nice
AUTHOR
R. Muller
STATUS
approved