login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A053143
Smallest square divisible by n.
16
1, 4, 9, 4, 25, 36, 49, 16, 9, 100, 121, 36, 169, 196, 225, 16, 289, 36, 361, 100, 441, 484, 529, 144, 25, 676, 81, 196, 841, 900, 961, 64, 1089, 1156, 1225, 36, 1369, 1444, 1521, 400, 1681, 1764, 1849, 484, 225, 2116, 2209, 144, 49, 100, 2601, 676, 2809
OFFSET
1,2
FORMULA
a(n) = n*A007913(n) = A019554(n)^2 = n^2/A008833(n) = (n/A000188(n))^2.
Multiplicative with p^e -> p^(e + e mod 2), p prime. - Reinhard Zumkeller, Feb 09 2003
Dirichlet g.f.: zeta(2s-2)*zeta(s-2)/zeta(2s-4). - R. J. Mathar, Oct 31 2011
Sum_{k=1..n} a(k) ~ Pi^2 * n^3 / 45. - Vaclav Kotesovec, Feb 08 2019
Sum_{n>=1} 1/a(n) = 5/2. - Amiram Eldar, Jul 29 2022
MATHEMATICA
Table[i = 1; While[Mod[i^2, n] > 0, i++]; i^2, {n, 100}] (* T. D. Noe, Oct 30 2011 *)
f[p_, e_] := p^(e + Mod[e, 2]); a[n_] := Times @@ (f @@@ FactorInteger[n]); Array[a, 100] (* Amiram Eldar, Aug 29 2019 *)
PROG
(PARI) a(n) = n*core(n); /* Joerg Arndt, Aug 02 2012 */
CROSSREFS
KEYWORD
easy,nonn,mult
AUTHOR
Henry Bottomley, Feb 28 2000
STATUS
approved