login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A280441
Least composite numbers k such that the least common multiples of their aliquot parts, each one increased by n, is less than k.
1
4, 9, 4, 25, 55, 49, 9, 25, 49, 121, 253, 49, 529, 129, 121, 125, 515, 133, 961, 121, 25, 529, 1081, 169, 917, 471, 361, 377, 1711, 121, 2809, 289, 529, 721, 319, 169, 2831, 1145, 961, 289, 3403, 497, 49, 529, 361, 1529, 4811, 289, 841, 781, 1339, 1369, 5671, 361
OFFSET
0,1
COMMENTS
All terms are semiprimes or powers of primes.
LINKS
EXAMPLE
a(36) = 2831 because the aliquot parts of 2831 are 1, 19, 149 and lcm(1 + 36, 19 + 36, 149 + 36) = lcm(37, 55, 185) = 2035 and 2831 is the least composite number to have this property.
MAPLE
with(numtheory): P:=proc(q) local a, h, k, n; for n from 0 to q do for k from 1 to q do
if not isprime(k) then a:=sort([op(divisors(k))]);
for h from 1 to nops(a)-1 do a[h]:=a[h]+n; od; a:={op(a)}; a:=op(a minus {a[nops(a)]});
if lcm(a)<k then print(k); break; fi; fi; od; od; end: P(10^6);
CROSSREFS
Sequence in context: A087321 A053143 A068238 * A255290 A087369 A200629
KEYWORD
nonn
AUTHOR
Paolo P. Lava, Jan 03 2017
STATUS
approved