login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A068238
Denominators of arithmetic derivative of 1/n: -A003415(n)/n^2.
3
1, 4, 9, 4, 25, 36, 49, 16, 27, 100, 121, 9, 169, 196, 225, 8, 289, 108, 361, 50, 441, 484, 529, 144, 125, 676, 27, 49, 841, 900, 961, 64, 1089, 1156, 1225, 108, 1369, 1444, 1521, 400, 1681, 1764, 1849, 121, 675, 2116, 2209, 144, 343, 500, 2601, 338, 2809, 36
OFFSET
1,2
LINKS
MAPLE
d:= n-> n*add(i[2]/i[1], i=ifactors(n)[2]):
a:= n-> denom(-d(n)/n^2):
seq(a(n), n=1..80); # Alois P. Heinz, Jun 07 2015
MATHEMATICA
d[n_] := If[n < 2, 0, n Sum[f[[2]]/f[[1]], {f, FactorInteger[n]}]];
a[n_] := Denominator[-d[n]/n^2];
Array[a, 80] (* Jean-François Alcover, Mar 12 2019 *)
PROG
(Python)
from fractions import Fraction
from sympy import factorint
def A068238(n): return Fraction(sum((Fraction(e, p) for p, e in factorint(n).items())), n).denominator # Chai Wah Wu, Nov 03 2022
CROSSREFS
Cf. A003415, A068237 (numerators).
Sequence in context: A087320 A087321 A053143 * A280441 A255290 A087369
KEYWORD
nonn,frac
AUTHOR
Reinhard Zumkeller, Feb 23 2002
STATUS
approved