login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A068240
1/2 the number of colorings of a 4 X 4 square array with n colors.
2
1, 3906, 3000366, 414425080, 19064362455, 428429377026, 5861180425996, 55823546748096, 403783634784285, 2353615149832210, 11531349080992026, 48981767072238936, 184656623163700051, 629125059062885490, 1964980839044519640, 5691311662142685376
OFFSET
2,2
LINKS
FORMULA
From Alois P. Heinz, Apr 27 2012 (Start)
G.f.: -(2507986*x^14 +349887529*x^13 +12282125725*x^12 +158263444274*x^11 +896159384816*x^10 +2455337616143*x^9 +3417678462327*x^8 +2453922059100*x^7 +895941969162*x^6 +158666067383*x^5 +12424532171*x^4 +363949394*x^3 +2934100*x^2 +3889*x+1)*x^2 / (x-1)^17.
a(n) = n*(n-1)*(n^14 -23*n^13 +253*n^12 -1762*n^11 +8675*n^10 -31939*n^9 +90723*n^8 -202160*n^7 +355622*n^6 -492434*n^5 +529770*n^4 -430857*n^3 +251492*n^2 -94782*n +17493)/2.
(End)
MAPLE
a:= n-> n*(n-1)*(17493+(-94782+(251492+(-430857+(529770+(-492434 +(355622+(-202160+(90723+(-31939+(8675+(-1762+(253 +(-23+n)*n)*n) *n)*n)*n)*n) *n)*n) *n)*n) *n)*n)*n) /2:
seq(a(n), n=2..30); # Alois P. Heinz, Apr 27 2012
KEYWORD
nonn
AUTHOR
R. H. Hardin, Feb 24 2002
STATUS
approved