This site is supported by donations to The OEIS Foundation.

 Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing. Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A182368 Triangle T(n,k), n>=1, 0<=k<=n^2, read by rows: row n gives the coefficients of the chromatic polynomial of the square grid graph G_(n,n), highest powers first. 28
 1, 0, 1, -4, 6, -3, 0, 1, -12, 66, -216, 459, -648, 594, -323, 79, 0, 1, -24, 276, -2015, 10437, -40614, 122662, -292883, 557782, -848056, 1022204, -960627, 682349, -346274, 112275, -17493, 0, 1, -40, 780, -9864, 90798, -647352, 3714180, -17590911, 69997383 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,4 COMMENTS The square grid graph G_(n,n) has n^2 = A000290(n) vertices and 2*n*(n-1) = A046092(n-1) edges. The chromatic polynomial of G_(n,n) has n^2+1 = A002522(n) coefficients. LINKS Alois P. Heinz, Rows n = 1..9, flattened Eric Weisstein's World of Mathematics, Chromatic Polynomial Eric Weisstein's World of Mathematics, Grid Graph Wikipedia, Chromatic Polynomial EXAMPLE 3 example graphs:                          o---o---o .                                          |   |   | .                             o---o        o---o---o .                             |   |        |   |   | .                o            o---o        o---o---o Graph:        G_(1,1)        G_(2,2)        G_(3,3) Vertices:        1              4              9 Edges:           0              4             12 The square grid graph G_(2,2) is the cycle graph C_4 with chromatic polynomial q^4 -4*q^3 +6*q^2 -3*q => row 2 = [1, -4, 6, -3, 0]. Triangle T(n,k) begins: 1,    0; 1,   -4,     6,      -3,        0; 1,  -12,    66,    -216,      459,       -648,         594, ... 1,  -24,   276,   -2015,    10437,     -40614,      122662, ... 1,  -40,   780,   -9864,    90798,    -647352,     3714180, ... 1,  -60,  1770,  -34195,   486210,   -5421612,    49332660, ... 1,  -84,  3486,  -95248,  1926585,  -30755376,   403410654, ... 1, -112,  6216, -227871,  6205479, -133865298,  2382122274, ... 1, -144, 10296, -487280, 17169852, -480376848, 11114098408, ... MATHEMATICA Reverse /@ CoefficientList[Table[ChromaticPolynomial[GridGraph[{n, n}], x], {n, 5}], x] // Flatten (* Eric W. Weisstein, May 01 2017 *) CROSSREFS Columns 0, 1 give: A000012, (-1)*A046092(n-1). Sums of absolute values of row elements give: A080690(n). Cf. A000290, A002522, A182406, A185442, A193233, A193277, A193283. Sequence in context: A087231 A019211 A212084 * A185442 A204174 A086467 Adjacent sequences:  A182365 A182366 A182367 * A182369 A182370 A182371 KEYWORD sign,look,tabf,hard AUTHOR Alois P. Heinz, Apr 26 2012 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 10 12:30 EST 2019. Contains 329895 sequences. (Running on oeis4.)