OFFSET
1,4
COMMENTS
LINKS
Alois P. Heinz, Rows n = 1..9, flattened
Eric Weisstein's World of Mathematics, Chromatic Polynomial
Eric Weisstein's World of Mathematics, Grid Graph
Wikipedia, Chromatic Polynomial
EXAMPLE
3 example graphs: o---o---o
. | | |
. o---o o---o---o
. | | | | |
. o o---o o---o---o
Graph: G_(1,1) G_(2,2) G_(3,3)
Vertices: 1 4 9
Edges: 0 4 12
The square grid graph G_(2,2) is the cycle graph C_4 with chromatic polynomial q^4 -4*q^3 +6*q^2 -3*q => row 2 = [1, -4, 6, -3, 0].
Triangle T(n,k) begins:
1, 0;
1, -4, 6, -3, 0;
1, -12, 66, -216, 459, -648, 594, ...
1, -24, 276, -2015, 10437, -40614, 122662, ...
1, -40, 780, -9864, 90798, -647352, 3714180, ...
1, -60, 1770, -34195, 486210, -5421612, 49332660, ...
1, -84, 3486, -95248, 1926585, -30755376, 403410654, ...
1, -112, 6216, -227871, 6205479, -133865298, 2382122274, ...
1, -144, 10296, -487280, 17169852, -480376848, 11114098408, ...
MATHEMATICA
Reverse /@ CoefficientList[Table[ChromaticPolynomial[GridGraph[{n, n}], x], {n, 5}], x] // Flatten (* Eric W. Weisstein, May 01 2017 *)
CROSSREFS
Sums of absolute values of row elements give: A080690(n).
KEYWORD
AUTHOR
Alois P. Heinz, Apr 26 2012
STATUS
approved