login
A280443
a(n) = A280442(n)/A223067(n) = A067624(n)*A046161(n)/A223068(n)
4
1, 1, 1, 1, 1, 1, 1, 11, 1, 1, 1, 1, 11, 17, 1, 23, 1, 11, 1, 1, 1, 17, 11, 1, 1, 1, 23, 11, 43, 17, 1, 1, 121, 1, 1, 1, 1, 4301, 1, 1, 1, 73, 11, 1, 1, 17, 1, 11, 23, 43, 1, 1, 11, 17, 1, 1, 1, 11, 101, 23, 89, 17, 11, 1, 1, 83, 1, 11, 1
OFFSET
0,8
COMMENTS
This sequence is related in a peculiar way to A223067 and A223068, sequences related to the complete elliptic integral of the first kind K(k), and to A280442 and A046161, sequences related to the unsigned Euler numbers A000364.
In this sequence certain prime numbers appear on a regular basis, either by itself or as a factor of a composite number, i.e., a(n)=11 if n=7+5*k, a(n)=17 if n=13+8*k, a(n)=23 if n=15+11*k, a(n)=43 if n=28+21*k, a(n)=73 if n=41+36*k, a(n)=101 if n=58+50*k, a(n)=89 if n=60+44*k, a(n)=83 if n=65+41*k, in all cases k >= 0. We observe that the period T of each prime is apparently T = (prime-1)/2.
Conjecture: The sequence A280443 will not have a(n)=1 after some point.
FORMULA
a(n) = A280442(n)/A223067(n).
a(n) = A067624(n)*A046161(n)/A223068(n).
a(n) = A280442(n)/numer((A280442(n)/A046161(n))/A067624(n)).
MAPLE
nmax:=68: A067624 := n -> 2^(2*n)*(2*n)!: f := series((exp(add((-1)^n*euler(2*n) * x^n/(2*n), n=1..nmax+1))), x=0, nmax+1): for n from 0 to nmax do b(n) := coeff(f, x, n); a(n) := numer(b(n))/numer(b(n)/A067624(n)) od: seq(a(n), n=0..nmax);
PROG
(Sage)
def A280443_list(prec):
P.<x> = PowerSeriesRing(QQ, default_prec=2*prec)
g = lambda x: exp(sum((-1)^k*euler_number(2*k)*x^k/(2*k) for k in (1..prec+1)))
R = P(g(x)).coefficients()
d = lambda n: 2*n - sum(n.digits(2))
return [(2^d(n)*R[n]/(numerator(R[n]/factorial(2*n)))) for n in (0..prec)]
print(A280443_list(68)) # Peter Luschny, Jan 05 2017
CROSSREFS
Cf. A000364 (Euler numbers), A046161, A067624, A223067, A223068, A280442.
Sequence in context: A321800 A130837 A010194 * A107045 A351449 A145140
KEYWORD
nonn,easy
AUTHOR
STATUS
approved