login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A223067
A sequence related to the period T of a simple gravity pendulum for arbitrary amplitudes.
5
1, 1, 11, 173, 22931, 1319183, 233526463, 2673857519, 39959591850371, 8797116290975003, 4872532317019728133, 1657631603843299234219, 247098748783812523360613, 77729277912104164732573547, 1503342018433974345747514544039
OFFSET
0,3
COMMENTS
For small angles the period T of a simple gravity pendulum obeys Christiaan Huygens’s law, i.e. T = 2*Pi*sqrt(L/g) with L the length of the pendulum and g the acceleration due to gravity. For arbitrary amplitudes the period T is given below, see Wikipedia. The Taylor series expansion of T as a function of the angular displacement phi leads for the numerators of the even powers of phi to the sequence given above and for the denominators to A223068.
REFERENCES
C. D. Andriesse and Sally Miedema, Huygens: The Man Behind the Principle, Ch. 8, 2005.
FORMULA
T = 2*Pi*sqrt(L/g)*(2/Pi)*K(sin(phi/2)) with K(k) the complete elliptic integral of the first kind.
T = 2*Pi*sqrt(L/g)/M(1,cos(phi/2)) where M(x,y) = (Pi/4)*((x+y)/(K((x-y)/(x+y)) is the arithmetic-geometric mean of x and y. - Johannes W. Meijer, Dec 28 2016
Let S = Sum_{n>=0} (-1)^n*euler(2*n)*x^n/(2*n) then a(n) = numerator(1/(2*n)! * [x^n] exp(S)). - Peter Luschny, Jan 05 2017
EXAMPLE
T = 2*Pi*sqrt(L/g) * (1 + (1/16)*phi^2 + (11/3072)*phi^4 + (173/737280)*phi^6 + … ).
MAPLE
nmax:=14: f := series((2/Pi)*EllipticK(sin(phi/2)), phi, 2*nmax+1): for n from 0 to nmax do a(n):= numer(coeff(f, phi, 2*n)) od: seq(a(n), n=0..nmax); # End first program.
nmax:=14: f := series(1/((Pi/4)*(1+cos(phi/2))/EllipticK((1-cos(phi/2))/(1+cos(phi/2)))), phi, 2*nmax+1): for n from 0 to nmax do a(n):= numer(coeff(f, phi, 2*n)) od: seq(a(n), n=0..nmax); # End second program. - Johannes W. Meijer, Dec 28 2016
MATHEMATICA
s = Series[EllipticK[Sin[t/2]^2 ], {t, 0, 60}]; CoefficientList[s/Pi, t^2] // Numerator (* Jean-François Alcover, Oct 07 2014 *)
PROG
(Sage)
def A223067_list(prec):
P.<x> = PowerSeriesRing(QQ, default_prec=2*prec)
g = lambda x: exp(sum((-1)^k*euler_number(2*k)*x^k/(2*k) for k in (1..prec+1)))
R = P(g(x)).coefficients()
return [numerator(R[n]/factorial(2*n)) for n in (0..prec)]
print(A223067_list(14)) # Peter Luschny, Jan 05 2017
CROSSREFS
Cf. A223068 (denominators), A019692 (2*Pi).
Sequence in context: A133243 A230604 A161355 * A280442 A218330 A365034
KEYWORD
nonn,easy,frac
AUTHOR
Johannes W. Meijer, Mar 14 2013
STATUS
approved