login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A067624
a(n) = 2^(2*n)*(2*n)!.
7
1, 8, 384, 46080, 10321920, 3715891200, 1961990553600, 1428329123020800, 1371195958099968000, 1678343852714360832000, 2551082656125828464640000, 4714400748520531002654720000, 10409396852733332453861621760000
OFFSET
0,2
COMMENTS
For n >= 1, a(n) equals the absolute value of the determinant of the 4n X 4n matrix with i's along the superdiagonal (where i is the imaginary unit), and 2, 3, 4, ... 4*n along the subdiagonal, and 0's everywhere else. (See Mathematica code below.) - John M. Campbell, Jun 04 2011
LINKS
FORMULA
a(n) = A000165(2*n) where A000165(k) are the double factorial numbers 2^k*k!=(2k)!!. - Corrected by Johannes W. Meijer, Jul 05 2009
a(n) = (4*n)!! = 2^(2*n)*(2*n)!. - Johannes W. Meijer, Jul 06 2009
sqrt((1+cos(x))/2) = Sum_{n>=0} (-1)^n * x^(2*n) / a(n).
a(n) = (A280442(n)/A046161(n))/(A223067(n)/A223068(n)). - Johannes W. Meijer, Jan 05 2017
From Amiram Eldar, Jul 12 2020: (Start)
Sum_{n>=0} 1/a(n) = cosh(1/2).
Sum_{n>=0} (-1)^n/a(n) = cos(1/2). (End)
MAPLE
for n from 0 to 30 by 2 do printf(`%d, `, 2^(n)*(n)!) od: # James A. Sellers, Feb 11 2002
A067624 := n -> 2^(2*n)*(2*n)!: seq(A067624(n), n=0..12); # Johannes W. Meijer, Jan 05 2017
MATHEMATICA
Table[Abs[Det[Array[KroneckerDelta[#1 + 1, #2]*I &, {4*n, 4*n}] + Array[KroneckerDelta[#1 - 1, #2]*#1 &, {4*n, 4*n}]]], {n, 1, 20}] (* John M. Campbell, Jun 04 2011 *)
Table[2^(2 n) (2 n)!, {n, 0, 30}] (* Vincenzo Librandi, Feb 18 2018 *)
PROG
(Magma) [2^(2*n)*Factorial(2*n): n in [0..15]]; // Vincenzo Librandi, Feb 18 2018
CROSSREFS
Cf. A000165.
Appears in A162445, A061549 and A120738. - Johannes W. Meijer, Jul 06 2009
Sequence in context: A265865 A096205 A162445 * A096204 A153836 A376868
KEYWORD
nonn
AUTHOR
Benoit Cloitre, Feb 02 2002
EXTENSIONS
More terms from James A. Sellers, Feb 11 2002
STATUS
approved