|
|
A067622
|
|
Consider the power series (x + 1)^(1/3) = 1 + x/3-x^2/9 + 5x^3/81 + ...; sequence gives numerators of coefficients.
|
|
3
|
|
|
1, 1, -1, 5, -10, 22, -154, 374, -935, 21505, -55913, 147407, -1179256, 3174920, -8617640, 70664648, -194327782, 537259162, -13431479050, 37466757350, -104906920580, 884215473460, -2491879970660, 7042269482300, -59859290599550
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,4
|
|
COMMENTS
|
a(n) is also the numerator of the binomial coefficient C(k,n) evaluated at k=1/3, e.g. a(4) = (1/24)k(k-1)(k-2)(k-3), plug in k=1/3 and take numerator. - James R. Buddenhagen, Aug 16 2014
|
|
LINKS
|
|
|
FORMULA
|
|
|
MAPLE
|
s := convert(taylor((x+1)^(1/3), x, 50), polynom): for n from 0 to 50 do printf(`%a, `, abs(numer(coeff(s, x, n)))) od;
|
|
CROSSREFS
|
|
|
KEYWORD
|
sign,frac
|
|
AUTHOR
|
|
|
EXTENSIONS
|
|
|
STATUS
|
approved
|
|
|
|