login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A341638
a(n) = Sum_{d|n} phi(d) * sigma(d) * tau(n/d).
1
1, 5, 10, 23, 26, 50, 50, 101, 97, 130, 122, 230, 170, 250, 260, 427, 290, 485, 362, 598, 500, 610, 530, 1010, 671, 850, 904, 1150, 842, 1300, 962, 1761, 1220, 1450, 1300, 2231, 1370, 1810, 1700, 2626, 1682, 2500, 1850, 2806, 2522, 2650, 2210, 4270, 2493, 3355, 2900, 3910, 2810, 4520
OFFSET
1,2
COMMENTS
Inverse Moebius transform of A062952.
LINKS
FORMULA
a(n) = Sum_{k=1..n} tau(gcd(n,k)) * sigma(n/gcd(n,k)).
a(n) = Sum_{d|n} A062952(d).
a(n) = Sum_{k=1..n} tau(n/gcd(n,k))*sigma(gcd(n,k))*phi(gcd(n,k))/phi(n/gcd(n,k)). - Richard L. Ollerton, May 09 2021
From Amiram Eldar, Jan 26 2023: (Start)
Multiplicative with a(p^e) = (p^(2*e+4) - p^(e+3) - 2*p^(e+2) - p^(e+1) + (e+1)*p^3 - (e-1)*p + 1)/(p^2-1)^2.
Sum_{k=1..n} a(k) ~ c * n^3, where c = (zeta(2)*zeta(3)^2/3) * Product_{p prime} (1 - 1/p^2 - 1/p^3 + 1/p^4) = A013661 * A002117^2 * A330523 / 3 = 0.424578... . (End)
MATHEMATICA
Table[Sum[EulerPhi[d] DivisorSigma[1, d] DivisorSigma[0, n/d], {d, Divisors[n]}], {n, 54}]
Table[Sum[DivisorSigma[0, GCD[n, k]] DivisorSigma[1, n/GCD[n, k]], {k, n}], {n, 54}]
f[p_, e_] := (p^(2*e + 4) - p^(e + 3) - 2*p^(e + 2) - p^(e + 1) + (e + 1)*p^3 - (e - 1)*p + 1)/(p^2 - 1)^2; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Jan 26 2023 *)
PROG
(PARI) a(n) = sumdiv(n, d, eulerphi(d)*sigma(d)*numdiv(n/d)); \\ Michel Marcus, Feb 17 2021
KEYWORD
nonn,mult
AUTHOR
Ilya Gutkovskiy, Feb 16 2021
STATUS
approved