|
|
A007430
|
|
Inverse Moebius transform applied thrice to natural numbers.
(Formerly M3750)
|
|
7
|
|
|
1, 5, 6, 16, 8, 30, 10, 42, 24, 40, 14, 96, 16, 50, 48, 99, 20, 120, 22, 128, 60, 70, 26, 252, 46, 80, 82, 160, 32, 240, 34, 219, 84, 100, 80, 384, 40, 110, 96, 336, 44, 300, 46, 224, 192, 130, 50, 594, 76, 230, 120, 256, 56, 410, 112, 420, 132, 160, 62, 768, 64, 170, 240, 466, 128, 420
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,2
|
|
COMMENTS
|
|
|
REFERENCES
|
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
|
|
LINKS
|
|
|
FORMULA
|
Multiplicative with a(p^e) = Sum_{k=0..e} binomial(e-k+2, e-k)*p^k.
Dirichlet g.f.: zeta(s-1)*zeta^3(s).
|
|
MAPLE
|
with(numtheory); A007430:=proc(q) local a, b, c, j, k, n;
for n from 1 to q do a:=divisors(n); c:=0; for k from 1 to nops(a) do b:=divisors(a[k]); c:=c+add(sigma(b[j]), j=1..nops(b)); od; print(c); od; end: A007430(10^6); # Paolo P. Lava, May 07 2013
|
|
MATHEMATICA
|
a[n_] := Total[ DivisorSigma[1, #]*DivisorSigma[0, n/#]& /@ Divisors[n]]; Table[a[n], {n, 1, 50}] (* Jean-François Alcover, Nov 15 2011 *)
|
|
PROG
|
(PARI) a(n)=sumdiv(n, d, sigma(d)*numdiv(n/d))
(PARI) a(n)=if(n<1, 0, direuler(p=2, n, 1/(1-X)^3/(1-p*X))[n]) /* Ralf Stephan */
(PARI) a(n)=sumdiv(n, x, sumdiv(x, y, sumdiv(y, z, z ) ) ); /* Joerg Arndt, Oct 07 2012 */
(Haskell)
a007430 n = sum $ zipWith (*) (map a000005 ds) (map a000203 $ reverse ds)
where ds = a027750_row n
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn,easy,nice,mult
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|