Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I M3750 #57 Feb 19 2024 01:50:39
%S 1,5,6,16,8,30,10,42,24,40,14,96,16,50,48,99,20,120,22,128,60,70,26,
%T 252,46,80,82,160,32,240,34,219,84,100,80,384,40,110,96,336,44,300,46,
%U 224,192,130,50,594,76,230,120,256,56,410,112,420,132,160,62,768,64,170,240,466,128,420
%N Inverse Moebius transform applied thrice to natural numbers.
%C a(n) = A000027(n) * A000012(n) * A000012(n) * A000012(n) = A000027(n) * A000012(n) * A000005(n) = A000203(n) * A000005(n) = A000203(n) * A000012(n) * A000012(n) = A007429(n) * A000012(n), where operation * denotes Dirichlet convolution for n >= 1. Dirichlet convolution of functions b(n), c(n) is function a(n) = b(n) * c(n) = Sum_{d|n} b(d)*c(n/d). - _Jaroslav Krizek_, Mar 20 2009
%D N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
%H T. D. Noe, <a href="/A007430/b007430.txt">Table of n, a(n) for n = 1..10000</a>
%H O. Bordelles, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL10/Bordelles2/bordelles61.html">Mean values of generalized gcd-sum and lcm-sum functions</a>, JIS 10 (2007) 07.9.2, sequence g_5.
%H N. J. A. Sloane, <a href="/transforms.txt">Transforms</a>
%F a(n) = Sum_{d|n} sigma(d)*tau(n/d). - _Benoit Cloitre_, Mar 03 2004
%F Multiplicative with a(p^e) = Sum_{k=0..e} binomial(e-k+2, e-k)*p^k.
%F Dirichlet g.f.: zeta(s-1)*zeta^3(s).
%F Sum_{k=1..n} a(k) ~ Pi^6 * n^2 / 432. - _Vaclav Kotesovec_, Nov 06 2018
%t a[n_] := Total[ DivisorSigma[1, #]*DivisorSigma[0, n/#]& /@ Divisors[n]]; Table[a[n], {n, 1, 50}] (* _Jean-François Alcover_, Nov 15 2011 *)
%o (PARI) a(n)=sumdiv(n,d,sigma(d)*numdiv(n/d))
%o (PARI) a(n)=if(n<1,0,direuler(p=2,n,1/(1-X)^3/(1-p*X))[n]) /* _Ralf Stephan_ */
%o (PARI) a(n)=sumdiv(n, x, sumdiv(x, y, sumdiv(y, z, z ) ) ); /* _Joerg Arndt_, Oct 07 2012 */
%o (Haskell)
%o a007430 n = sum $ zipWith (*) (map a000005 ds) (map a000203 $ reverse ds)
%o where ds = a027750_row n
%o -- _Reinhard Zumkeller_, Aug 02 2014
%Y Cf. A000005, A000203, A027750.
%K nonn,easy,nice,mult
%O 1,2
%A _N. J. A. Sloane_