login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A034164 Related to triple factorial numbers 2*A034000(n+1). 7
1, 5, 30, 198, 1386, 10098, 75735, 580635, 4528953, 35819901, 286559208, 2314516680, 18846778680, 154543585176, 1274984577702, 10574872085646, 88123934047050, 737458184920050, 6194648753328420, 52212039492339540, 441429061162507020, 3742550735942994300 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 0..200

FORMULA

a(n) = 3^n*(3*n+2)!!!/(n+2)!, where (3*n+2)!!! = 2*A034000(n+1).

G.f.: (1 - 3*x - (1-9*x)^(1/3))/(3*x)^2.

G.f.: 2F1( (1, 5/3); 3; 9 x ). - Olivier Gérard, Feb 15 2011

D-finite with recurrence: (n+2)*a(n) -3*(3*n+2)*a(n-1) = 0. - R. J. Mathar, Oct 29 2012

a(n) = 3^(2*n+1) * Gamma(n+5/3) / ((n+2) * Gamma(2/3) * Gamma(n+2)). - Vaclav Kotesovec, Feb 09 2014

Integral representation as the n-th moment of a positive function on (0,9), in Maple notation: a(n) = int(x^n*W(x), x=0..9), n=0,1,..., where W(x) = (1/18)*9^(1/3)*sqrt(3)*x^(2/3)*(1-x/9)^(1/3)/Pi. This representation is unique as W(x) is the solution of the Hausdorff moment problem. - Karol A. Penson, Nov 07 2015

MAPLE

seq(coeff(series((1-3*x-(1-9*x)^(1/3))/(3*x)^2, x, n+2), x, n), n = 0..32); # G. C. Greubel, Sep 17 2019

MATHEMATICA

CoefficientList[Series[ HypergeometricPFQ[{1, 5/3}, {3}, 9 x], {x, 0, 20}], x]

Table[FullSimplify[3^(2*n+1) * Gamma[n+5/3] / ((n+2) * Gamma[2/3] * Gamma[n+2])], {n, 0, 20}] (* Vaclav Kotesovec, Feb 09 2014 *)

CoefficientList[Series[(1 -3x -(1-9 x)^(1/3))/(3 x)^2, {x, 0, 30}], x] (* Vincenzo Librandi, Feb 10 2014 *)

PROG

(PARI) my(x='x+O('x^30)); Vec((1 -3*x -(1-9*x)^(1/3))/(3*x)^2) \\ G. C. Greubel, Sep 17 2019

(MAGMA) R<x>:=PowerSeriesRing(Rationals(), 30); Coefficients(R!( (1 -3*x -(1-9*x)^(1/3))/(3*x)^2 )); // G. C. Greubel, Sep 17 2019

(Sage)

def A034164_list(prec):

    P.<x> = PowerSeriesRing(QQ, prec)

    return P((1 -3*x -(1-9*x)^(1/3))/(3*x)^2).list()

A034164_list(30) # G. C. Greubel, Sep 17 2019

CROSSREFS

Cf. A004990, A025748, A034000, A185047.

Sequence in context: A264910 A196471 A265279 * A322257 A103433 A081015

Adjacent sequences:  A034161 A034162 A034163 * A034165 A034166 A034167

KEYWORD

nonn,easy

AUTHOR

Wolfdieter Lang

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified July 6 08:51 EDT 2020. Contains 335476 sequences. (Running on oeis4.)