OFFSET
0,3
COMMENTS
G.f. (with a(0)=0) is series reversion of x - 3*x^2 + 3*x^3.
The Hankel transform of a(n) is A005130(n) * 3^binomial(n,2).
LINKS
Vincenzo Librandi, Table of n, a(n) for n = 0..1000
I. M. Gessel and G. Xin, The generating function of ternary trees and continued fractions, arXiv:math/0505217 [math.CO], 2005, eq. (5.1).
Wolfdieter Lang, On generalizations of Stirling number triangles, J. Integer Seqs., Vol. 3 (2000), Article 00.2.4.
Elżbieta Liszewska and Wojciech Młotkowski, Some relatives of the Catalan sequence, arXiv:1907.10725 [math.CO], 2019.
Thomas M. Richardson, The Super Patalan Numbers, J. Int. Seq. 18 (2015), Article 15.3.3; arXiv preprint, arXiv:1410.5880 [math.CO], 2014.
FORMULA
From Wolfdieter Lang: (Start)
G.f.: (4 - (1-9*x)^(1/3))/3.
a(n) = 3^(n-1) * 2 * A034000(n-1)/n!, n >= 2.
a(n) = 3 * A034164(n-2), n >= 2. (End)
D-finite with recurrence n*a(n) +3*(4-3*n)*a(n-1) = 0, n >= 2. - R. J. Mathar, Oct 29 2012
For n>0, a(n) = 9^(n-1) * Gamma(n-1/3) / (n * Gamma(2/3) * Gamma(n)). - Vaclav Kotesovec, Feb 09 2014
For n > 0, a(n) = 3^(2*n-1)*(-1)^(n+1)*binomial(1/3, n). - Peter Bala, Mar 01 2022
Sum_{n>=0} 1/a(n) = 37/16 + 3*sqrt(3)*Pi/64 - 9*log(3)/64. - Amiram Eldar, Dec 02 2022
MAPLE
A025748 :=proc(n)
local x;
coeftayl(4-(1-9*x)^(1/3), x=0, n) ;
%/3 ;
end proc: # R. J. Mathar, Nov 01 2012
MATHEMATICA
CoefficientList[Series[(4-Power[1-9x, (3)^-1])/3, {x, 0, 25}], x] (* Harvey P. Dale, Nov 14 2011 *)
Flatten[{1, Table[FullSimplify[9^(n-1) * Gamma[n-1/3] / (n * Gamma[2/3] * Gamma[n])], {n, 1, 25}]}] (* Vaclav Kotesovec, Feb 09 2014 *)
PROG
(PARI) a(n)=if(n<1, n==0, polcoeff(serreverse(x-3*x^2+3*x^3+x*O(x^n)), n))
(Magma) R<x>:=PowerSeriesRing(Rationals(), 25); Coefficients(R!( (4 - (1-9*x)^(1/3))/3 )); // G. C. Greubel, Sep 17 2019
(Sage)
def A025748_list(prec):
P.<x> = PowerSeriesRing(QQ, prec)
return P((4 - (1-9*x)^(1/3))/3).list()
A025748_list(25) # G. C. Greubel, Sep 17 2019
CROSSREFS
KEYWORD
nonn
AUTHOR
STATUS
approved