login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A201953
A diagonal of irregular triangle A201949.
3
1, 3, 15, 90, 629, 5019, 45030, 448776, 4919321, 58825415, 762089899, 10633219662, 158974192987, 2535484008225, 42970371055268, 771162539117408, 14609924404202130, 291386317037291622, 6102681801481066642, 133910606028043519500, 3072216586896101950757
OFFSET
2,2
COMMENTS
G.f. of row n in triangle A201949 equals Product_{k=0..n-1} (1 + k*x + x^2).
FORMULA
E.g.f.: Sum_{n>=0} log(1 - x)^(2*n+2) / (n!*(n+2)!). - Paul D. Hanna, Feb 25 2019
a(n) = [x^(n-2)] Product_{k=0..n-1} (1 + k*x + x^2).
EXAMPLE
E.g.f.: A(x) = x^2/2! + 3*x^3/3! + 15*x^4/4! + 90*x^5/5! + 629*x^6/6! + 5019*x^7/7! + 45030*x^8/8! + 448776*x^9/9! + 4919321*x^10/10! + ...
Triangle A201949 begins:
[1],
[1, 0, 1],
[(1), 1, 2, 1, 1],
[1,(3), 5, 6, 5, 3, 1],
[1, 6, (15), 24, 28, 24, 15, 6, 1],
[1, 10, 40, (90), 139, 160, 139, 90, 40, 10, 1],
[1, 15, 91, 300, (629), 945, 1078, 945, 629, 300, 91, 15, 1], ...
where coefficients in parenthesis form the initial terms of this sequence.
PROG
(PARI) {a(n) = polcoeff( prod(j=0, n-1, 1 + j*x + x^2), n-2)}
for(n=2, 30, print1(a(n), ", "))
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Dec 06 2011
EXTENSIONS
Offset changed to 2 to agree with the e.g.f. - Paul D. Hanna, Feb 25 2019
STATUS
approved