login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A201951 G.f.: Sum_{n>=0} x^n * Product_{k=0..n-1} (1 + k*x + x^2). 7
1, 1, 1, 3, 6, 13, 33, 85, 234, 675, 2032, 6367, 20677, 69442, 240529, 857634, 3141970, 11808611, 45464065, 179088744, 720947705, 2962994169, 12420658682, 53061133078, 230828047288, 1021809688593, 4599749893986, 21043392417004, 97784119963565, 461277854065112 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,4

COMMENTS

Equals the antidiagonal sums of irregular triangle A201949.

LINKS

Vaclav Kotesovec, Table of n, a(n) for n = 0..560

FORMULA

G.f.: A(x) = 1/(1 - x*(1+x^2)/(1+x*(1+x^2) - x*(1+x+x^2)/(1+x*(1+x+x^2) - x*(1+2*x+x^2)/(1+x*(1+2*x+x^2) - x*(1+3*x+x^2)/(1+x*(1+3*x+x^2) +...))))), a continued fraction.

G.f.: A(x) =1 + x*(1+x^2)/(G(0) - x*(1+x^2)) ; G(k)= k*x^2 + 1 + x + x^3 - x*(1+x+x^2+x*k)/G(k+1) ; (continued fraction). - Sergei N. Gladkovskii, Dec 28 2011

EXAMPLE

G.f.: A(x) = 1 + x + x^2 + 3*x^3 + 6*x^4 + 13*x^5 + 33*x^6 + 85*x^7 +...

where the g.f. equals the series:

A(x) = 1 + x*(1+x^2) + x^2*(1+x^2)*(1+x+x^2) + x^3*(1+x^2)*(1+x+x^2)*(1+2*x+x^2) + x^4*(1+x^2)*(1+x+x^2)*(1+2*x+x^2)*(1+3*x+x^2) +...

PROG

(PARI) {a(n)=sum(k=0, n, polcoeff(prod(j=0, n-k-1, 1+j*x+x^2), k))}

(PARI) {a(n)=polcoeff(sum(m=0, n, x^m*prod(j=0, m-1, 1+j*x+x^2))+x*O(x^n), n)}

(PARI) {a(n)=local(CF=x+x*O(x)); for(k=1, n, CF=x*(1+(n-k)*x+x^2)/(1+x*(1+(n-k)*x+x^2)-CF)); polcoeff(1/(1-CF), n, x)}

CROSSREFS

Cf. A201949, A201950.

Sequence in context: A273974 A179928 A026538 * A104448 A062466 A053564

Adjacent sequences:  A201948 A201949 A201950 * A201952 A201953 A201954

KEYWORD

nonn

AUTHOR

Paul D. Hanna, Dec 06 2011

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 29 03:35 EDT 2020. Contains 337420 sequences. (Running on oeis4.)