OFFSET
0,2
COMMENTS
LINKS
Vincenzo Librandi, Table of n, a(n) for n = 0..1000
FORMULA
a(n) = -9^(n+1)*binomial(n+1/3, n+2). - Karol A. Penson, Nov 06 2015
a(n) = (1/(6*sqrt(3)*Pi))*Integral_{x = 0..9} x^n*x^(1/3)*(9 - x)^(2/3). Cf. A034164. - Peter Bala, Nov 17 2015
O.g.f.: (1 - (1-9*x)^(2/3) - 6*x)/(9*x^2).
D-finite with recurrence (n+2)*a(n) +3*(-3*n-1)*a(n-1)=0. - R. J. Mathar, Jul 27 2022
Sum_{n>=0} 1/a(n) = (3/512)*(92 + 15*Pi*sqrt(3) + 45*log(3)). - Amiram Eldar, Dec 18 2022
a(n) = ((n + 3)/3) * Product_{1 <= i <= j <= n} (2*i + j + 3)/(2*i + j - 1). - Peter Bala, Feb 22 2023
MAPLE
A185047:=n->-9^(n+1)*binomial(n+1/3, n+2): seq(A185047(n), n=0..30); # Wesley Ivan Hurt, Feb 16 2017
MATHEMATICA
CoefficientList[Series[ HypergeometricPFQ[{1, 4/3}, {3}, 9 x], {x, 0, 20}], x]
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Olivier Gérard, Feb 15 2011
STATUS
approved