login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A185047
Expansion of 2F1( [1, 4/3]; [3]; 9*x).
4
1, 4, 21, 126, 819, 5616, 40014, 293436, 2200770, 16805880, 130245570, 1021926780, 8102419470, 64819355760, 522606055815, 4242331511910, 34645707347265, 284459491903860, 2346790808206845, 19444838125142430, 161745698950048395, 1350224965148230080
OFFSET
0,2
COMMENTS
Close to A003168.
Can be seen as a degree 3 analog of the Catalan numbers A000108 (which would be degree 2).
LINKS
FORMULA
a(n) = -9^(n+1)*binomial(n+1/3, n+2). - Karol A. Penson, Nov 06 2015
a(n) = (1/(6*sqrt(3)*Pi))*Integral_{x = 0..9} x^n*x^(1/3)*(9 - x)^(2/3). Cf. A034164. - Peter Bala, Nov 17 2015
O.g.f.: (1 - (1-9*x)^(2/3) - 6*x)/(9*x^2).
D-finite with recurrence (n+2)*a(n) +3*(-3*n-1)*a(n-1)=0. - R. J. Mathar, Jul 27 2022
Sum_{n>=0} 1/a(n) = (3/512)*(92 + 15*Pi*sqrt(3) + 45*log(3)). - Amiram Eldar, Dec 18 2022
a(n) = ((n + 3)/3) * Product_{1 <= i <= j <= n} (2*i + j + 3)/(2*i + j - 1). - Peter Bala, Feb 22 2023
MAPLE
A185047:=n->-9^(n+1)*binomial(n+1/3, n+2): seq(A185047(n), n=0..30); # Wesley Ivan Hurt, Feb 16 2017
MATHEMATICA
CoefficientList[Series[ HypergeometricPFQ[{1, 4/3}, {3}, 9 x], {x, 0, 20}], x]
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Olivier Gérard, Feb 15 2011
STATUS
approved