login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Expansion of 2F1( [1, 4/3]; [3]; 9*x).
4

%I #44 Feb 24 2023 02:04:02

%S 1,4,21,126,819,5616,40014,293436,2200770,16805880,130245570,

%T 1021926780,8102419470,64819355760,522606055815,4242331511910,

%U 34645707347265,284459491903860,2346790808206845,19444838125142430,161745698950048395,1350224965148230080

%N Expansion of 2F1( [1, 4/3]; [3]; 9*x).

%C Close to A003168.

%C Can be seen as a degree 3 analog of the Catalan numbers A000108 (which would be degree 2).

%H Vincenzo Librandi, <a href="/A185047/b185047.txt">Table of n, a(n) for n = 0..1000</a>

%F a(n) = -9^(n+1)*binomial(n+1/3, n+2). - _Karol A. Penson_, Nov 06 2015

%F a(n) = (1/(6*sqrt(3)*Pi))*Integral_{x = 0..9} x^n*x^(1/3)*(9 - x)^(2/3). Cf. A034164. - _Peter Bala_, Nov 17 2015

%F O.g.f.: (1 - (1-9*x)^(2/3) - 6*x)/(9*x^2).

%F D-finite with recurrence (n+2)*a(n) +3*(-3*n-1)*a(n-1)=0. - _R. J. Mathar_, Jul 27 2022

%F Sum_{n>=0} 1/a(n) = (3/512)*(92 + 15*Pi*sqrt(3) + 45*log(3)). - _Amiram Eldar_, Dec 18 2022

%F a(n) = ((n + 3)/3) * Product_{1 <= i <= j <= n} (2*i + j + 3)/(2*i + j - 1). - _Peter Bala_, Feb 22 2023

%p A185047:=n->-9^(n+1)*binomial(n+1/3, n+2): seq(A185047(n), n=0..30); # _Wesley Ivan Hurt_, Feb 16 2017

%t CoefficientList[Series[ HypergeometricPFQ[{1, 4/3}, {3}, 9 x], {x, 0, 20}], x]

%Y Cf. A000108, A003168, A034164.

%K nonn,easy

%O 0,2

%A _Olivier Gérard_, Feb 15 2011