|
|
A185048
|
|
Length of the continued fraction for floor(Fibonacci(n)*(1+sqrt(5))/2) / Fibonacci(n).
|
|
3
|
|
|
1, 1, 2, 2, 4, 2, 6, 4, 8, 4, 10, 6, 12, 6, 14, 8, 16, 8, 18, 10, 20, 10, 22, 12, 24, 12, 26, 14, 28, 14, 30, 16, 32, 16, 34, 18, 36, 18, 38, 20, 40, 20, 42, 22, 44, 22, 46, 24, 48, 24, 50, 26, 52, 26, 54, 28, 56, 28, 58, 30, 60, 30, 62, 32, 64, 32, 66, 34, 68, 34
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,3
|
|
COMMENTS
|
A240828 is an essentially identical sequence. - Bruno Berselli, Apr 18 2014
|
|
LINKS
|
Bruno Berselli, Table of n, a(n) for n = 1..20000
|
|
FORMULA
|
a(1)=a(2)=1, for k>=2 we have a(2k)=2*floor(k/2) and a(2k-1)=2*k-2.
G.f.: x*(x^7+x^6-x^5+x^4+x^3+x^2+x+1) / ((x-1)^2*(x+1)^2*(x^2+1)). - Colin Barker, Jun 20 2013
|
|
MATHEMATICA
|
Table[Length[ContinuedFraction[Floor[Fibonacci[n]*GoldenRatio]/Fibonacci[n]]], {n, 70}]
|
|
PROG
|
(PARI) a(n)=if(n<3, 1, if(n%2, n-1, 2*floor(n/4)))
|
|
CROSSREFS
|
Cf. A000045, A001622, A240828.
Sequence in context: A334164 A277705 A028913 * A240828 A239240 A054929
Adjacent sequences: A185045 A185046 A185047 * A185049 A185050 A185051
|
|
KEYWORD
|
nonn,easy
|
|
AUTHOR
|
Benoit Cloitre, Feb 15 2011
|
|
STATUS
|
approved
|
|
|
|