login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A240828
a(1)=a(2)=0, a(3)=2; thereafter a(n) = Sum( a(n-i-s-a(n-i-1)), i=0..k-1 ), where s=0, k=3.
7
0, 0, 2, 2, 4, 2, 6, 4, 8, 4, 10, 6, 12, 6, 14, 8, 16, 8, 18, 10, 20, 10, 22, 12, 24, 12, 26, 14, 28, 14, 30, 16, 32, 16, 34, 18, 36, 18, 38, 20, 40, 20, 42, 22, 44, 22, 46, 24, 48, 24, 50, 26, 52, 26, 54, 28, 56, 28, 58, 30, 60, 30, 62, 32, 64, 32, 66, 34, 68, 34, 70, 36, 72, 36, 74, 38, 76, 38, 78, 40, 80, 40
OFFSET
1,3
COMMENTS
Is this A185048 with the leading two 1's replaced by 0's? - R. J. Mathar, Apr 17 2014.
This is true, see formulas below. - Bruno Berselli, Apr 18 2014
LINKS
Joseph Callaghan, John J. Chew III, and Stephen M. Tanny, On the behavior of a family of meta-Fibonacci sequences, SIAM Journal on Discrete Mathematics 18.4 (2005): 794-824. See Fig. 1.4.
FORMULA
From Bruno Berselli, Apr 18 2014: (Start)
G.f.: 2*x^3*(1 + x + x^2)/((1 - x)^2*(1 + x)^2*(1 + x^2)).
a(n) = n - 1 - ((-1)^n + 1)*(n - (-1)^floor(n/2) - 1)/4. Therefore:
a(2h+1) = 2h, a(2h) = 2*floor(h/2), or also: a(4h) = a(4h+2) = 2h, a(4h+1) = 4h, a(4h+3) = 4h+2.
a(n) = a(n-2) + a(n-4) - a(n-6) for n>6. (End)
MAPLE
#T_s, k(n) from Callaghan et al. Eq. (1.6).
s:=0; k:=3;
a:=proc(n) option remember; global s, k;
if n <= 2 then 0
elif n = 3 then 2
else
add(a(n-i-s-a(n-i-1)), i=0..k-1);
fi; end;
t1:=[seq(a(n), n=1..100)];
MATHEMATICA
LinearRecurrence[{0, 1, 0, 1, 0, -1}, {0, 0, 2, 2, 4, 2}, 100] (* Vincenzo Librandi, Jul 12 2015 *)
PROG
(Magma) [n le 3 select 2*Floor((n-1)/2) else Self(n-Self(n-1))+Self(n-1-Self(n-2))+Self(n-2-Self(n-3)): n in [1..100]]; // Bruno Berselli, Apr 18 2014
(Magma) [n-1-((-1)^n+1)*(n-(-1)^Floor(n/2)-1)/4: n in [1..80]]; // Vincenzo Librandi, Jul 12 2015
CROSSREFS
Cf. A185048.
Sequence in context: A277705 A028913 A185048 * A239240 A054929 A236628
KEYWORD
nonn,look,hear,easy
AUTHOR
N. J. A. Sloane, Apr 16 2014
STATUS
approved