login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A240826
Number of ways to choose three points on a centered hexagonal grid of size n.
2
0, 35, 969, 7770, 35990, 121485, 333375, 790244, 1679580, 3280455, 5989445, 10349790, 17083794, 27128465, 41674395, 62207880, 90556280, 128936619, 180007425, 246923810, 333395790, 443749845, 582993719, 756884460, 971999700, 1235812175, 1556767485, 1944365094
OFFSET
1,2
COMMENTS
A centered hexagonal grid of size n is a grid with A003215(n-1) points forming a hexagonal lattice.
LINKS
Eric Weisstein's World of Mathematics, Hex Number.
FORMULA
a(n) = binomial(A003215(n-1), 3)
= binomial(3*n^2-3*n+1, 3)
= 1/2*n*(n-1)*(3*n^2-3*n+1)*(3*n^2-3*n-1)
= 9/2*n^6-27/2*n^5+27/2*n^4-9/2*n^3-1/2*n^2+1/2*n.
G.f.: -x^2*(35*x^4+724*x^3+1722*x^2+724*x+35) / (x-1)^7. - Colin Barker, Apr 18 2014
Sum_{n>=2} 1/a(n) = sqrt(3/7)*Pi*tan(sqrt(7/3)*Pi/2) + sqrt(3)*Pi*tanh(Pi/(2*sqrt(3))) - 2. - Amiram Eldar, Feb 17 2024
MAPLE
seq(binomial(3*n^2-3*n+1, 3), n=1..28); # Martin Renner, May 31 2014
op(PolynomialTools[CoefficientList](convert(series(-x^2*(35*x^4+724*x^3+1722*x^2+724*x+35)/(x-1)^7, x=0, 29), polynom), x)[2..29]); # Martin Renner, May 31 2014
MATHEMATICA
CoefficientList[Series[- x(35 x^4 + 724 x^3 + 1722 x^2 + 724 x + 35)/(x - 1)^7, {x, 0, 50}], x] (* Vincenzo Librandi, Apr 19 2014 *)
LinearRecurrence[{7, -21, 35, -35, 21, -7, 1}, {0, 35, 969, 7770, 35990, 121485, 333375}, 40] (* Harvey P. Dale, Sep 12 2019 *)
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Martin Renner, Apr 17 2014
STATUS
approved