login
A240830
a(n)=1 for n <= s+k; thereafter a(n) = Sum(a(n-i-s-a(n-i-1)),i=0..k-1) where s=0, k=7.
8
1, 1, 1, 1, 1, 1, 1, 7, 7, 7, 7, 7, 7, 7, 13, 13, 13, 13, 13, 13, 19, 13, 19, 19, 19, 19, 25, 19, 25, 19, 25, 25, 31, 25, 31, 25, 31, 25, 31, 31, 37, 31, 37, 31, 37, 37, 37, 37, 43, 37, 43, 43, 43, 43, 43, 43, 49, 49, 49, 49, 49, 49, 49, 55, 55, 55, 55, 55, 55, 61, 55, 61, 61, 61, 61, 67, 61, 67, 61, 67, 67, 73
OFFSET
1,8
LINKS
Joseph Callaghan, John J. Chew III, and Stephen M. Tanny, On the behavior of a family of meta-Fibonacci sequences, SIAM Journal on Discrete Mathematics 18.4 (2005): 794-824. See Table 2.1.
MAPLE
#T_s, k(n) from Callaghan et al. Eq. (1.7).
s:=0; k:=7;
a:=proc(n) option remember; global s, k;
if n <= s+k then 1
else
add(a(n-i-s-a(n-i-1)), i=0..k-1);
fi; end;
t1:=[seq(a(n), n=1..100)];
MATHEMATICA
A240830[n_]:=A240830[n]=If[n<=7, 1, Sum[A240830[n-i-A240830[n-i-1]], {i, 0, 6}]];
Array[A240830, 100] (* Paolo Xausa, Dec 06 2023 *)
CROSSREFS
Same recurrence as A240828, A120503 and A046702.
See also A240831, A240832.
Callaghan et al. (2005)'s sequences T_{0,k}(n) for k=1 through 7 are A000012, A046699, A046702, A240835, A241154, A241155, A240830.
Sequence in context: A255910 A108689 A261225 * A245402 A024583 A158812
KEYWORD
nonn,look,hear
AUTHOR
N. J. A. Sloane, Apr 16 2014
STATUS
approved