login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A034165 Number of 'zig-zag' self-avoiding walks on an n X n lattice from a corner to opposite one. 1
1, 2, 2, 4, 10, 36, 188, 1582, 20576, 388592, 10461898, 408377408, 23652253982, 2052824036762, 265634749049320, 50828371798067240, 14332652975511249270, 5965063285700860583374, 3673747085941764271303790, 3352654279654465148964378096 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

A 'zig-zag' walk does not contain 2 consecutive steps in the same direction.

LINKS

Table of n, a(n) for n=1..20.

Eric Weisstein's World of Mathematics, Self-avoiding walk.

EXAMPLE

a(4)=4 because of the following paths:

A._......A......A.._.......A_

...|_....|_.....|_|.|_......_|

.....|_....|_........_|....|_..._

.......|.....|_.....|_.......|_|.|

.......B.......B......B..........B

CROSSREFS

Cf. A034166.

Sequence in context: A112556 A254400 A054100 * A006181 A322924 A173100

Adjacent sequences:  A034162 A034163 A034164 * A034166 A034167 A034168

KEYWORD

nonn,walk

AUTHOR

Felice Russo

EXTENSIONS

a(7)-a(11) computed by David W. Wilson

a(12)-a(13) computed by Luca Petrone, Dec 31 2015

a(14)-a(20) from Andrew Howroyd, Jan 15 2018

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 1 23:31 EDT 2022. Contains 357173 sequences. (Running on oeis4.)