login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A322924
Sum of n-th Bell number and n-th Bell number written backwards.
1
2, 2, 4, 10, 66, 77, 505, 1655, 4554, 95259, 695486, 754446, 12166721, 101089109, 414897413, 6841551376, 84604250548, 123761716632, 1633685476445, 13337764677442, 79077443378087, 632521435125225, 7744164113623377, 108500061705109490, 1428467362263664833
OFFSET
0,1
COMMENTS
After 2, the next prime Bell number is a(110), which has 131 digits.
LINKS
FORMULA
a(n) = A000110(n) + A004098(n).
EXAMPLE
a(4) = 66 because Bell(4) = 15 and 15 + 51 = 66.
a(5) = 77 because Bell(5) = 52 and 52 + 25 = 77.
MAPLE
g:= proc(n) local L, i;
L:= convert(n, base, 10);
n + add(L[-i]*10^(i-1), i=1..nops(L))
end proc:
map(g @ combinat:-bell, [$0..30]); # Robert Israel, Mar 13 2019
MATHEMATICA
BellB[#] + FromDigits[Reverse[IntegerDigits[BellB[#]]]]&/@Range[0, 30]
PROG
(Magma) [Bell(n) + Seqint(Reverse(Intseq(Bell(n)))): n in [0..30]];
CROSSREFS
KEYWORD
nonn,base,easy
AUTHOR
Vincenzo Librandi, Mar 12 2019
STATUS
approved