|
|
A322927
|
|
Expansion of x*(1 + 5*x + 40*x^2)/((1 - x^2)*(1 - 10*x^2)).
|
|
1
|
|
|
0, 1, 5, 51, 55, 551, 555, 5551, 5555, 55551, 55555, 555551, 555555, 5555551, 5555555, 55555551, 55555555, 555555551, 555555555, 5555555551, 5555555555, 55555555551, 55555555555, 555555555551, 555555555555, 5555555555551, 5555555555555, 55555555555551
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,3
|
|
LINKS
|
Muniru A Asiru, Table of n, a(n) for n = 0..1000
Index entries for linear recurrences with constant coefficients, signature (0,11,0,-10).
|
|
FORMULA
|
G.f.: x*(1 + 5*x + 40*x^2)/((1 - x^2)*(1 - 10*x^2)).
a(n) = 11*a(n-2) - 10*a(n-4).
a(n) = 5*(10^n - 1)/9 for n even; a(n) = (5*10^n - 41)/9 otherwise.
|
|
MAPLE
|
seq(coeff(series(x*(1+5*x+40*x^2)/((1-x^2)*(1-10*x^2)), x, n+1), x, n), n = 0 .. 30); # Muniru A Asiru, Mar 17 2019
|
|
MATHEMATICA
|
CoefficientList[Series[x (1 + 5 x + 40 x^2) / (10 x^4 - 11 x^2 + 1), {x, 0, 25}], x]
|
|
PROG
|
(Magma) I:=[0, 1, 5, 51]; [n le 4 select I[n] else 11*Self(n-2)-10*Self(n-4): n in [1..30]];
|
|
CROSSREFS
|
Bisections give: A002279 (even part), A173804 (odd part).
Sequence in context: A160779 A077681 A326738 * A333261 A117710 A064019
Adjacent sequences: A322924 A322925 A322926 * A322928 A322929 A322930
|
|
KEYWORD
|
nonn,easy
|
|
AUTHOR
|
Vincenzo Librandi, Mar 17 2019
|
|
STATUS
|
approved
|
|
|
|