login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A322923
Primes of the form 3*p + 4, where p is a prime.
1
13, 19, 37, 43, 61, 73, 97, 127, 163, 181, 223, 241, 271, 307, 313, 331, 397, 421, 457, 523, 541, 547, 577, 601, 673, 691, 727, 757, 811, 853, 883, 937, 997, 1051, 1063, 1123, 1153, 1171, 1231, 1297, 1303, 1321, 1531, 1567, 1627, 1693, 1783, 1801
OFFSET
1,1
LINKS
MAPLE
select(isprime, [3*ithprime(p)+4$p=1..120]); # Muniru A Asiru, Mar 23 2019
MATHEMATICA
Select[Table[p=Prime[n]; 3p+4, {n, 85}], PrimeQ]
PROG
(Magma) [a: p in PrimesUpTo(600) | IsPrime(a) where a is 3*p+4];
(GAP) P:=Filtered([1..1000], IsPrime);;
a:=Filtered(List(P, i->3*i+4), k->IsPrime(k)); # Muniru A Asiru, Mar 23 2019
(PARI) terms(n) = my(x=0, i=0); forprime(p=1, , if(i >= n, break); x=3*p+4; if(ispseudoprime(x), print1(x, ", "); i++))
/* Print initial 50 terms as follows: */
terms(50) \\ Felix Fröhlich, Mar 23 2019
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Vincenzo Librandi, Mar 12 2019
STATUS
approved