login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A057749
Prime degrees of absolutely reducible trinomials: primes p such that x^p + x^k + 1 is reducible over GF(2) for all k, p>k>0.
1
13, 19, 37, 43, 53, 59, 61, 67, 83, 101, 107, 109, 131, 139, 149, 157, 163, 173, 179, 181, 197, 211, 227, 229, 251, 269, 277, 283, 293, 307, 311, 317, 331, 347, 349, 373, 379, 389, 397, 419, 421, 443, 461, 467, 491, 499, 509, 523, 541, 547, 557, 563, 571
OFFSET
1,1
MATHEMATICA
Do[ k = 1; While[ ToString[ Factor[ x^Prime[ n ] + x^k + 1, Modulus -> 2 ] ] != ToString[ x^Prime[ n ] + x^k + 1 ] && k < Prime[ n ], k++ ]; If[ k == Prime[ n ], Print[ Prime[ n ] ] ], {n, 1, 144} ]
PROG
(PARI) lista(nn) = {forprime(p=2, nn, ok = 1; for (k=1, p-1, if (polisirreducible(Mod(1, 2)*(x^p + x^k + 1)), ok = 0; break); ); if (ok, print1(p, ", ")); ); }
CROSSREFS
Sequence in context: A275660 A088186 A089490 * A040070 A322923 A048523
KEYWORD
nonn
AUTHOR
Robert G. Wilson v, Oct 30 2000
STATUS
approved