login
A275660
Numbers n such that sigma(n) = Sum_{j=1..k} d(n^j) for some k, where sigma(n) is the sum of the divisors of n and d(n) is the number of divisors of n.
4
1, 13, 19, 34, 43, 53, 58, 89, 103, 151, 229, 251, 254, 329, 341, 349, 404, 433, 463, 593, 674, 701, 739, 859, 1033, 1223, 1429, 1483, 1506, 1670, 1709, 1826, 1846, 1886, 1889, 1948, 1951, 2067, 2091, 2143, 2255, 2308, 2431, 2699, 3001, 3079, 3319, 3739, 4003, 4093
OFFSET
1,2
COMMENTS
The primes in this sequence are A124199. - Robert Israel, Feb 20 2024
LINKS
EXAMPLE
d(53^1) + d(53^2) + d(53^3) + d(53^4) + d(53^5) + d(53^6) + d(53^7) + d(53^8) + d(53^9) = 54 = sigma(53).
MAPLE
P:= proc(q) local a, k, n;
for n from 1 to q do a:=sigma(n); k:=0;
while a>0 do k:=k+1; a:=a-tau(n^k); od;
if a=0 then print(n); fi; od; end: P(10^9);
CROSSREFS
KEYWORD
nonn
AUTHOR
Paolo P. Lava, Aug 04 2016
STATUS
approved